首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用恒电流方式在AZ91D镁合金表面制备多孔阳极氧化膜。通过电压-时间曲线研究了电流密度对氧化行为的影响。采用SEM、单板拉剪试验研究了电流密度对氧化膜表面形貌及拉伸强度的影响。结果表明,电流密度不影响击穿电压及临界电压的大小。随着电流密度增加,电压达到击穿电压及临界电压的时间缩短,氧化膜孔隙率及拉伸强度均先增加后减小,当电流密度为10 mA/cm~2时拉伸强度最大,可达到22.40 MPa。  相似文献   

2.
A simple method of fabricating hemispherical nanostructures on a curved aluminum rod surface was presented. In conventional methods of fabricating nanopatterns on a curved aluminum surface, mechanical or chemical processes have been widely used for the lens technologies. Such processes are not only expensive with long processing times, however, but they also involve local fabrication and are limited in the dimension size. In this paper, a method of fabricating hemispherical nanostructures on a curved aluminum surface is suggested for a functional three-dimensional (3D) master using a low-temperature and high-voltage (LTHV) anodizing method. By reducing the aluminum reaction rate under a low-temperature environment, the reaction current density can be remarkably reduced even though a high voltage was induced. Using the LTHV anodizing method, the hemispherical pattern size can be easily controlled with respect to voltage variations. The sizes of the hemispherical nanopatterns were about 150-300 nm. Using the LTHV anodizing process, hemispherical nanostructures can be obtained on a curved aluminum surface with controllable pattern sizes of 150-300 nm without defects such as burring from Joule's heat, micro-scratches, and cracks. A curved 3D hemispherical nanostructure may be used as a master in the roll-to-roll process.  相似文献   

3.
姜永军  李波 《材料保护》2019,52(4):26-29,84
硬质阳极氧化(HA)过程中添加乙醇和使用磁搅拌能够有效抑制烧穿现象的发生。将0.3mol/L草酸电解液的溶剂设置为体积比分别为1:1、2:1、3:1和4:1的去离子水与乙醇混合溶液,同时使用磁搅拌进行二次高压阳极氧化。通过分析电流时间曲线和原子力显微镜(AFM)表征的表面形貌,研究了乙醇添加量和磁搅拌对高压阳极氧化的影响。结果表明:溶剂中水与乙醇体积比的大小对制备出模板的孔径和孔间距几乎没有影响;氧化过程中及时改变磁搅拌速度可以有效抑制烧穿现象,使用变速磁搅拌也可制备出高有序度的阳极氧化铝模板。  相似文献   

4.
纳米氧化铝有序多孔膜制备工艺研究   总被引:1,自引:0,他引:1  
为了获得大面积有序孔排列以及不同孔径的氧化铝膜,采用二次阳极氧化法可制备大面积有序铝阳极氧化多孔(AAO)膜,着重研究氧化电压、氧化时间、电解液浓度以及扩孔时间对AAO膜孔径大小、膜层厚度和形貌结构的影响,用X射线粉末衍射(XRD)仪进行物相分析,利用扫描电子显微镜(SEM)表征多孔膜的形貌.结果表明,在700 ℃以下条件下AAO膜以无定形态存在,经800 ℃退火后无定形氧化铝转化为γ-Al2O3,多孔膜随电压和电解液浓度增加而增大,经H3PO4溶液扩孔后可获得较大孔径模板,扩孔时间与孔径变化呈近似线性关系.为满足应用需求的AAO膜的制备提供了依据.  相似文献   

5.
LED绝缘铝基板的制备与散热性能研究   总被引:1,自引:0,他引:1  
李艳菲  张方辉  梁田静  杜红兵 《功能材料》2012,43(11):1421-1424
采用硬质阳极氧化工艺制备LED封装用铝基板绝缘层,通过实验分析了制备铝基板过程中氧化时间、草酸浓度、硫酸浓度和电流密度等因素对其氧化膜厚度、击穿电压的影响,得到了制备低热阻铝基板的最佳工艺参数:电流密度3A/dm2,草酸浓度为10g/L,H2SO4浓度150g/L,氧化时间45min。利用原子力显微镜(AFM)观察热冲击后裂纹萌生的情况,结果表明铝基板有微小裂纹,但仍满足绝缘要求,通过对氧化铝膜热阻的测试发现,铝基板与氧化膜的复合热阻在1~3℃/W之间。结果表明用阳极氧化法制备的铝氧化膜满足LED基板对散热及绝缘性的要求。  相似文献   

6.
Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.  相似文献   

7.
In the present work, aluminum alloy 6061/10%SiC composite is machined using numerical controlled Z-axis (ZNC) electrical discharge machining (EDM) process. Improvement in material removal rate (MRR) is explored using tungsten powder suspended dielectric fluid in EDM process (powder-mixed electrical discharge machining (PMEDM)). Peak current, pulse on time, pulse off time, and gap voltage are studied as process parameters. Mathematical relation between process parameters and MRR is established on basis of response surface methodology. The results obtained are further compared with MRR achieved from machining using simple EDM. The existence of tungsten particles in kerosene resulted in 48.43% improvement in MRR. The influence of tungsten powder-mixed dielectric fluid on machined surface is analyzed using scanning electron microscope and energy dispersive spectroscopy (EDS). The results revealed improvement in surface finish and reduction in recast layer thickness with PMEDM. EDS analysis reported presence of tungsten and carbon in recast layer deposited on machined surface.  相似文献   

8.
The performance of an electrocoagulation (EC) process with aluminum/iron electrodes for removal of chromium on laboratory scale was studied. The effect of operational parameters such as initial pH, current density (CD), reaction time, initial concentrations (50, 100, 500, 1000 mg/L), solution conductivity, electrical energy consumption (EEC) and type of circuit were studied in an attempt to reach higher Cr(VI) removal efficiency. Alternating pulse current (APC) was used to prevent the passivity or polarization of electrodes. Important operating parameters were optimized to access higher (99%) Cr(VI) removal efficiency as follows: EEC range: 4-58 kW h/m(3) wastewater, CD: 56-222 A/m(2), operating time: 20-110 min, pH 3-9 (pH(optimum) 5), voltage: 15-25 V. NaCl, KCl, PAC (poly aluminum chloride), NaNO(3) were used as supporting electrolytes. NaCl as well as KCl handled the EC with the best performance in every aspect; however, PAC and NaNO(3) did not have the same results (Applied conductivity is better than literature). The results of this work are comparable with those of recent studies. Equal removal efficiency was obtained in "direct current" (DC) and (APC); however, when "APC" was used, water recovery (0.92 m(3)/m(3) wastewater) was significant and the turbidity was 1 NTU. "APC" amazed our experimental team.  相似文献   

9.
Disperse systems consisting of a liquid and gas bubbles located in it are considered. Two possible versions of evolution of bubbles under the conditions studied are assessed. In simple liquids, contact between two bubbles causes them to merge, as the separating film breaks. In the case of complex organic liquids, amphiphilic film is formed on the surface of bubbles, and the lifetime of bubbles in contact increases with their size. Under an external electric field, chains of bubbles are formed, lined up along the electric field potential lines. The presence of bubbles in liquid greatly lowers the breakdown threshold, as the critical parameters of the breakdown field in liquids are two to three orders of magnitude higher than those in gases at atmospheric pressure. Various breakdown mechanisms in liquids are discussed from the viewpoint of formation of the gas phase during the passage of an electric current through a liquid medium. The character of propagating a streamer in separate bubbles is studied with their random distribution in liquid and in the case of formation of some structures of bubbles; the critical parameters of disperse systems, that can lead to their electrical breakdown, are presented. Along with the general concepts of electrical breakdown in dispersed systems, experimental studies of these processes are considered, and the nature of electrical breakdown in liquid dielectrics, including transformer oil, is discussed.  相似文献   

10.
Manipulating microstructures of composites in three dimensions has been a long standing challenge. An approach is proposed and demonstrated to fabricate artificial nanocomposites by controlling the 3D distribution and orientation of oxide nanoparticles in a polymer matrix. In addition to possessing much enhanced mechanical properties, these nanocomposites can sustain extremely high voltages up to ≈10 kV, exhibiting high dielectric breakdown strength and low leakage current. These nanocomposites show great promise in resolving the paradox between dielectric constant and breakdown strength, leading to ultrahigh electrical energy density (over 2000% higher than that of the bench‐mark polymer dielectrics) and discharge efficiency. This approach opens up a new avenue for the design and modulation of nanocomposites. It is adaptable to the roll‐to‐roll fabrication process and could be employed as a general technique for the mass production of composites with intricate nanostructures, which is otherwise not possible using conventional polymer processing techniques.  相似文献   

11.
Surface morphology control on porous anodic alumina in phosphoric acid   总被引:1,自引:0,他引:1  
We report the detailed surface morphology control of porous anodic aluminas (PAAs) fabricated in phosphoric acid. The surface defects can be dramatically lessened by employing the second anodization process, but there are still distortions on the surface. In the second anodizing process, the electric field distribution is not regular at the beginning due to the various pore shape and size, which leads to PAA surface distortion. One way to eliminate the surface morphology distortion is to burn the surface defects under higher temperature and higher anodizing voltage, and another way is to have well ordered nanopore array in oxalic acid before anodizing in phosphoric acid to restrict the electric field.  相似文献   

12.
M P GARG  ANISH KUMAR  C K SAHU 《Sadhana》2017,42(6):981-1005
Inconel 625 is one of the most versatile nickel-based super alloy used in the aerospace, automobile, chemical processing, oil refining, marine, waste treatment, pulp and paper, and power industries. Wire electrical discharge machining (WEDM) is the process considered in the present text for machining of Inconel 625 as it can provide an effective solution for machining ultra-hard, high-strength and temperature-resistant materials and alloys, overcoming the constraints of the conventional processes. The present work is mainly focused on the analysis and optimization of the WEDM process parameters of Inconel 625. The four machining parameters, that is, pulse on time, pulse off time, spark gap voltage and wire feed have been varied to investigate their effects on three output responses, such as cutting speed, gap current, and surface roughness. Response surface methodology was used to develop the experimental models. The parametric analysis-based results revealed that pulse on time and pulse off time were significant, spark gap voltage is the least significant, and wire feed as a single factor is insignificant. Multi-objective optimization technique was employed using desirability approach to obtain the optimal parameters setting. Furthermore, surface topography in terms of machining parameters revealed that pulse on time and pulse off time significantly deteriorate the surface of the machined samples, which produce the deeper, wider overlapping craters and globules of debris.  相似文献   

13.
Functionally graded aluminum matrix composites (FGAMCs) are new materials with excellent capabilities for design and development of complex engineering works. In this work, FGAMCs are machined using electrical discharge machining (EDM) with the process input parameters such as pulse current, pulse on time, and zone position in brake disk. Design of experiments is used for the experimental planning with full factorial method. The selected input process parameters are optimized using gray relational analysis to minimize the electrode wear ratio, overcut, power consumption, and surface roughness. The influential studies of input process parameters on the output responses are also conducted. The optimal EDM parameter setting for achieving better output parameters is pulse current at 5 A, pulse on time at 50?µs and 45?mm zone position distance in the brake disk. The pulse current (39.40%) contributed the maximum in minimizing the output responses. Further, the surface morphology is also analyzed on the material to observe the crater formation and the erosion mechanism.  相似文献   

14.
微弧氧化工艺参数对覆盖层厚度的影响规律模型   总被引:9,自引:2,他引:9  
微弧氧化工艺参数影响着覆盖层厚度,而覆盖层厚度直接影响处理后的性能.为了解工艺参数对覆盖层厚度的影响规律,基于微弧氧化过程的等效电路,建立了氧化过程中电压、电流和电解液电导率等对覆盖层厚度影响的理论模型.模型分析结果表明,覆盖层厚度随电解液电导率增大、时间延长而增加,厚度增加速度在处理初期大于处理后期,恒电流条件下厚度增加速度与电压的增加速度成正比.模型分析结果与已有试验结果吻合.  相似文献   

15.
镁合金阳极氧化的研究与发展现状   总被引:17,自引:0,他引:17  
综述了镁合金阳极氧化工艺的研究与发展现状,包括着色和密封技术,阳极氧化涂层的反应机理和结构,以及镁和铝阳极氧化之间的异同点,提出了进一步研究和开发的方向。  相似文献   

16.
Aluminum‐ion batteries (AIBs) are regarded as viable alternatives to lithium‐ion technology because of their high volumetric capacity, their low cost, and the rich abundance of aluminum. However, several serious drawbacks of aqueous systems (passive film formation, hydrogen evolution, anode corrosion, etc.) hinder the large‐scale application of these systems. Thus, nonaqueous AIBs show incomparable advantages for progress in large‐scale electrical energy storage. However, nonaqueous aluminum battery systems are still nascent, and various technical and scientific obstacles to designing AIBs with high capacity and long cycling life have not been resolved until now. Moreover, the aluminum cell is a complex device whose energy density is determined by various parameters, most of which are often ignored, resulting in failure to achieve the maximum performance of the cell. The purpose here is to discuss how to further develop reliable nonaqueous AIBs. First, the current status of nonaqueous AIBs is reviewed based on statistical data from the literature. The influence of parameters on energy density is analyzed, and the current situation and existing problems are summarized. Furthermore, possible solutions and concerns regarding the construction of reliable nonaqueous AIBs are comprehensively discussed. Finally, future research directions and prospects in the aluminum battery field are proposed.  相似文献   

17.
为了掌握多孔氧化铝模板的纳米力学性能,采用二次氧化法制备孔径在30~40nm之间且高度有序的纳米阵列氧化铝模板,并使用扫描电子显微镜(SEM)对其形貌进行表征;在原位纳米力学测试系统上进行微压痕实验,对样品表面力学性能(纳米硬度、模量)进行测试;利用原子力成像功能对实验区域扫描成像,在纳米尺度下观察和分析样品形貌.结果表明,AAO模板在同一深度处对应的硬度、模量值明显高于相应的基体材料铝,膜基体系的抗载能力明显提高;在压入深度为70~240nm时,AAO膜板的硬度和模量值分别为5.8GPa和106GPa,但从深度250nm时开始出现减小趋势;单晶铝与压针的接触为理想刚塑性接触,AAO模板与压针的接触为弹塑性接触.  相似文献   

18.
Amorphous SrTiO3 thin films were fabricated on Pt (100)/Ti/SiO2/Si substrates by sol–gel and spin-coating technology and their surface and cross-section morphology were characterized by using field emission scanning electron microscopy. A broad absorption band at about 3390 cm?1 owing to the stretching vibrations of hydroxyl groups in the absorbed water was observed from fourier transform infrared spectroscopy. JE measurements were used to investigate the electrical characteristics of SrTiO3 films. The breakdown characteristics and leakage current are strongly dependent upon their electrode materials. SrTiO3 films with Al top electrodes exhibit significantly higher breakdown strength and much lower leakage current than those with Au top electrodes. Moreover, samples with Al electrodes exhibit distinct electrical characteristics when a negative voltage was applied under different testing conditions. The surface chemical state of aluminum was analyzed by using X-ray photoelectron spectroscopy, indicating that the 45 nm thick Al electrode was completely transformed into aluminum oxide layer when a positive voltage was applied. These results show that the anodic oxidation of the Al electrodes and films is suggested to be responsible for the enhanced electrical characteristics of SrTiO3 thin films.  相似文献   

19.
A new welding method, which uses a Gaussian current waveform with a smooth curve and concentrated energy input, was applied for welding of aluminum alloys of various thickness. Current peak modulation and base modulation models are proposed in the article. Five welding experiments were carried out using ER4043 1.2 mm aluminum wire, the results showing that the welding process was found to be stable, and that current and voltage waveforms were regular with no broken arcs or short circuits. Moreover, the arc voice sound was soft with low splatter. Weld seam surfaces were bright with regular scaly stripes and proper weld height and penetration.  相似文献   

20.
5A06铝合金阳极氧化和微弧氧化膜绝缘性能研究   总被引:2,自引:0,他引:2  
采用阳极氧化和微弧氧化方法对5A06铝合金进行表面绝缘化处理,并对试样膜层的形貌、物相、绝缘电阻、漏电流、击穿电压和抗液氮冲击等性能进行了研究.结果表明,5A06阳极氧化膜为非晶相,而微弧氧化膜主要为晶相γ-Al2O3.无论是阳极氧化膜还是微弧氧化膜,干燥条件下的交流和直流击穿电压均较潮湿条件下的高;相同电流模式下,氧...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号