首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several nut oil varieties mainly used as culinary and overall healthy food ingredients were subject of the present study. Headspace solid‐phase microextraction combined with gas chromatography‐mass spectrometry was employed in order to determine the qualitative composition of volatile compounds. Furthermore, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry was used in order to assess the profiles and relative composition of the prevalent triacylglycerols (TAG) within the oils. The headspace of the majority of oil samples was dominated by high contents of acetic acid (up to 42%) and hexanal (up to 32%). As nut oils are typically gained by cold‐pressing from previously roasted nuts, characteristic pyrazine derivatives as well as degradation products of long‐chain fatty acids were detected. TAG analysis of these oils revealed a quite homogeneous composition dominated by components of the C52 and C54 group composed mainly of oleic (18:1), linoleic (18:2), stearic (18:0) and palmitic (16:0) acid residues representing together between 65 and 95% of the investigated nut oils. The TAG profiles showed characteristic patterns which can be used as ‘fingerprints’ of the genuine oils. Nut oils exhibiting quite similar fatty acid composition (e.g. hazelnut, pistachio and beech oil) could be clearly discriminated based on TAG showing significant differences between the oils.  相似文献   

2.
It is well‐known that triacylglycerols in vegetable oils undergo slow oxidative modifications upon storage particularly at elevated temperatures. This has been shown primarily for oils with unsaturated fatty acid residues that are most sensitive towards oxidation. Saturated oils, however, were by far less investigated. In the present study saturated oils (coconut oil) as well as isolated triacylglycerols were exposed to defined thermal stressing and the resulting products were investigated in dependence on temperature and the heating period. Matrix‐assisted laser desorption and ionization spectrometry, 13C and 31P nuclear magnetic resonance spectroscopy and infrared spectroscopy were used for the characterization of the native as well as the thermally stressed oil samples. These methods were used since they provide both, fast and reliable information on oil composition and can be performed faster than other more established methods. We found that the degradation mechanism of saturated fatty acids is completely different from unsaturated fatty acids. Whereas unsaturated oils are primarily depleted under the cleavage of the double bonds, saturated oils undergo a conversion of one methylene group into a carbonyl group. This was independently demonstrated by all applied methods for the triacylglycerols as well as for the free fatty acids derived after saponification.  相似文献   

3.
Shea butter is used as an edible vegetable fat in many African countries. It can be utilized as a substitute or complete replacement for cocoa butter in various applications and plays an important role in traditional African medicinal practice. Although detection of volatile compounds by solid‐phase micro‐extraction gas‐chromatography mass‐spectroscopy (SPME‐GC‐MS) is a very reliable and reproducible technique, which can be used as an important part of authenticity checking, production monitoring and contamination detection, no published data about volatile compounds of shea butter are available so far. In this investigation, the characteristic volatiles in the headspace of original African shea butter samples were identified by using SPME‐capillary‐GC coupled to a mass selective detector. Almost 100 different volatile components were identified, e.g. fatty acids, saturated and unsaturated aldehydes and ketones, terpenes, and typical Maillard reaction products such as methylfuranes and pyrazines. Furthermore, the samples have been olfactorily evaluated by a panel of professional flavorists and trained analytical chemists. It can be stated that variations in processing conditions of shea butter result in considerable differences in the composition of headspace volatiles, detected by SPME‐GC‐MS and human olfaction.  相似文献   

4.
Triacylglycerols (TAG) are the most important group of compounds present in vegetable oils. These biomolecules, determining the physical, chemical and nutritional properties of the oils, are considered to be good fingerprints for quality and authenticity control. Therefore, TAGs characterization is a very important task in edible oil field, which has been undertaken by different analytical methods. The analysis of vegetable oils is still dominated by classic determinations, which are however laborious and time‐consuming and cannot be used routinely. More recently, advances in MS instrumentations coupled with online separation techniques and data processing have contributed to great expansion of MS in oil study, allowing the development of innovative analytical approaches that exhibit higher sensitivity, accuracy and rapidity in vegetable oils investigations. In the present contribution, a review of the most relevant applications of novel mass spectrometric techniques, such as ESI and MALDI, both alone and hyphenated with HPLC, used for analysis of the complex TAGs mixture of edible oils is illustrated.  相似文献   

5.
The photooxidation of soybean oil was determined and correlated with triacylglycerol composition and structure. Purified triacylglycerols were photooxidized at room temperature under fluorescent light. Rates of peroxide formation and total headspace volatiles were related positively (P<0.5 significance) to oxidizability (r=0.75, r=0.76); content of linolenic acid (r=0.80, r=0.85) and linoleic acid (r=0.61, r=0.57); linoleic acid on carbon 2 (r=0.64, r=0.64); and average number of double bonds (r=0.76, r=0.76). Negative correlations were observed with respect to oleic acid (r=−0.70, r=−0.70). Soybean oil stability was decreased by linolenic acid-containing triacylglycerols and increased by oleic acid-containing triacylglycerols. Trilinoleoylglycerol and dilinoleoyl-oleoylglycerol were the most important oxidation product precursors. However, for high-linolenic acid soybean oil, dilinoleoyl-linolenoylglycerol and trilinoleoylglycerol were the most important oxidation product precursors. The most abundant volatile produced from thermal decomposition at 140°C of photooxidized triacylglycerols was 2-heptenal, except for high-linolenic acid oils, where the most abundant volatile was propanal. The photooxidative stability of soybean oil triacylglycerols with respect to composition and structure is of interest for the development of soybean varieties with oils of improved odor and flavor stability. Presented at the 20th ISF World Congress 83rd Annual American Oil Chemists’ Society Meeting, May 10–14, 1992, Toronto, Canada.  相似文献   

6.
7.
Linseed (Linum usitatissimum, L.) and camelina (Camelina sativa, L.) are ancient crops containing seed oils with a high potential for nutritional, medicinal, pharmaceutical and technical applications. In the present study, linseed and camelina oils of plant varieties grown under Central European climate conditions were examined with respect to their volatile and triacylglycerol (TAG) components. Solid‐phase microextraction was applied to the study of volatile compounds of several linseed and camelina oils, which have not been described prior to this publication. Hexanol (6.5–20.3% related to the total level of volatiles), trans‐2‐butenal (1.3–5.0%) and acetic acid (3.6–3.8%) could be identified as the main volatile compounds in the linseed oil samples. Trans‐2‐butenal (9.8%) and acetic acid (9.3%), accompanied by trans,trans‐3,5‐octadiene‐2‐one (3.8%) and trans,trans‐2,4‐heptadienal (3.6%), dominated the headspace of the examined camelina oil samples. TAG were analysed by MALDI‐RTOF‐MS and ESI‐IT‐MS, providing information about the total TAG composition of the oils as well as the fatty acid composition of the individual components. More than 20 TAG could be identified directly from whole linseed oil samples, mainly composed of linolenic (18:3), linoleic (18:2) and oleic (18:1) acid, and to a lesser degree of stearic (18:0) and palmitic (16:0) acid. While in linseed these TAG comprise more than 60% of the oils, Camelina sativa exhibited a wider range of more than 50 constituents, with a considerable amount (>35%) of TAG containing gadoleic (20:1) and eicosadienoic (20:2) acid.  相似文献   

8.
The oxidative stability of soybean oil triacylglycerols was studied with respect to composition and structure. Crude soybean oils of various fatty acid and triacylglycerol composition, hexane-extracted from ground beans, were chromatographed to remove non-triacylglycerol components. Purified triacylglycerols were oxidized at 60°C, in air, in the dark. The oxidative stability or resistance of the substrate to reaction with oxygen was measured by determination of peroxide value and headspace analysis of volatiles of the oxidized triacylglycerols (at less than 1% oxidation). The correlation coefficients (r) for rates of peroxide formation (r=0.85) and total headspace volatiles (r=0.87) were related positively to oxidizability. Rate of peroxide formation showed a positive correlation with average number of double bonds (r=0.81), linoleic acid (r=0.63), linolenic acid (r=0.85). Rate of peroxide formation also showed a positive correlation with linoleic acid (r=0.72) at the 2-position of the glycerol moiety. A negative correlation was observed between rate of peroxide formation and oleic acid (r=−0.82). Resistance of soybean triacylglycerols to reaction with oxygen was decreased by linolenic (r=0.87) and increased by oleic acid (r=−0.76)-containing triacylglycerols. Volatile formation was increased by increased concentration of linolenic acid at exterior glycerol carbons 1,3 and by linoleic acid at the interior carbon 2. Headspace analysis of voltiles and high-performance liquid chromatography of hydroperoxides indicated that as oxidation proceeded there was a slight decrease in the linolenic acid-derived hydroperoxides and an increase in the linoleic acid-derived hydroperoxides. The oxidative stability of soybean oil triacylclycerols with respect to composition and structure is of interest to the development of soybean varieties with oils of improved odor and flavor stability. Presented at the 81st Annual American Oil Chemists' Society Meeting, Baltimore, MD, April 18–21, 1990.  相似文献   

9.
10.
Data for viscosity as a function of temperature from 24 to 110°C (75 to 230°F) have been measured for a number of vegetable oils (crambe, rapeseed, corn, soybean, milk-weed, coconut, lesquerella) and eight fatty acids in the range from C9 to C22. The viscosity measurements were performed according to ASTM test methods D 445 and D 446. Several correlations were fitted to the experimental data. Correlation constants for the best fit are presented. The range of temperature in which the correlations are valid is from 24°C (75°F), or the melting point of the substance, to 110°C (230°F). The correlation constants are valuable for designing or evaluating such chemical process equipment as heat exchangers, reactors, distillation columns, mixing vessels and process piping.  相似文献   

11.
12.
The present review reports the current literature of the last 10 years on selective oxidation reactions of fatty acid derivatives and vegetable oils. The work is structured in divisions including epoxidation, radical oxidations, Wacker‐type oxidation, dihydroxylation and C=C double bond cleavage.  相似文献   

13.
Canola oil triacylglycerols from genetically modified canola lines (InterMountain Canola Co., Cinnaminson, NJ) have been evaluated for their photooxidative and autoxidative stabilities, as influenced by their fatty acid compositions and their triacylglycerol compositions and structures. Purified canola oil triacylglycerols were oxidized in duplicate in fluorescent light at 25°C and in the dark at 60°C under oxygen, and their oxidative deterioration with time was monitored by determining colorimetric peroxide values. Also monitored with time, oxidation products were determined by reversed-phase high-performance liquid chromatography with ultraviolet absorbance detection. Total volatiles, generated by thermal decomposition of the oxidized triacylglycerols, were quantitated by static-head-space gas chromatography. These experimental parameters were statistically correlated with predicted oxidizability, fatty acid composition, position of fatty acids on glycerol carbons and triacylglycerol composition. Oxidative deterioration of canola triacylglycerols correlated negatively with oleic acid composition, with oleic acid content at carbon 2 and with trioleoylglycerol content of the oil. Deterioration was positively correlated with the amount of linolenic acid on nonspecific locations on glycerol carbons 1,2 and 3, the amount of linoleic acid on glycerol carbon 2 and withsn-oleoyllinoleoyllinolenoyl glycerol content. Differences in character or quantity of volatile product and triacylglycerol hydroperoxides were low, whether generated during autoxidation or photooxidation of the canola triacylglycerols. Presented at the joint meeting of the American and Japan Oil Chemists' Societies, April 25–28, 1993, Anaheim, California.  相似文献   

14.
The bioactivity of onion, particularly its oil, has gained increasing research attention. Preparation of onion oil is challenging due to its low oil content and abundance of water. In this study, pilot-scale drying combined with laboratory extraction was conducted for sample preparation. GC/MS and solid phase microextraction (SPME) analyses were performed to evaluate the correlation between onion oil and drying. Results showed that drying significantly influenced the sulfocompounds composition of onion oils. Dipropyl disulfide and dispropyl trisulfide were the most abundant compounds in fresh onions (accounting for 68.41% to 93.13% of the total volatile sulfocompounds). The total contents of sulfocompounds in vacuum freeze dried and hot air dried onion powder were 4.96% and 39.79%, respectively, which account for 24.59% to 48.89% of the total content. Dimethyl sulfides and thiophenes were the main compounds in the onion oils. The highest content of sulfocompounds was obtained in the oil of hot air dried powder. Pilot-scale hot air drying was the optimal pretreatment method for onion oil extraction. It enjoys lower energy lost, shorter process time, and higher quality of the oil compared with freeze drying. The results may be helpful for onion oil production and bioactivity evaluation.  相似文献   

15.
In the presence of an immobilized lipase fromCandida antacrtica (Novozym 435R) fatty acids are converted to peroxy acids by the reaction with hydrogen peroxide. In a similar reaction, fatty acid esters are perhydrolyzed to peroxy acids. Unsaturated fatty acid esters subsequently epoxidize themselves, and in this way epoxidized plant oils can be prepared with good yields (rapeseed oil 91%, sunflower oil 88%, linseed oil 80%). The hydrolysis of the plant oil to mono- and diglycerides can be suppressed by the addition of a small amount of free fatty acids. Rapeseed oil methyl ester can also be epoxidized; the conversion of C=C-bonds is 95%, and the composition of the epoxy fatty acid methyl esters corresponds to the composition of the unsaturated methyl esters in the substrate. Based partly on a lecture at the 86th AOCS Annual Meeting & Expo, San Antonio, Texas, May 7–11, 1995.  相似文献   

16.
17.
18.
Freeze‐dried leaf, stem bark, and root bark powders of Aegiceras corniculatum were extracted with three different types of polar solvents: methanol, ethyl acetate, and water. The methanol extracts had the highest concentrations in total phenolics and extractable condensed tannins, followed by water and ethyl acetate extracts. Analysis by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) suggested that condensed tannins from leaf, stem bark, and root bark contained prodelphinidins and procyanidins, with the predominance of prodelphinidins and high level of galloylation. Acid‐catalyzed degradation in the presence of benzyl mercaptan indicated that gallocatechin, epigallocatechin, epigallocatechin‐3‐O‐gallate, and epicatechin‐3‐O‐gallate occurred as the terminal units and (epi)gallocatechin, (epi)gallocatechin‐3‐O‐gallate, (epi)catechin, and (epi)catechin‐3‐O‐gallate occurred as the extension units. The mean degrees of polymerization (mDP) of condensed tannins from leaf, stem bark, and root bark were 13.5, 7.4, and 12.3, respectively. The condensed tannins from leaf and stem bark exhibited a higher DPPH radical scavenging activity and ferric reducing/antioxidant power compared to that of synthetic antioxidant butylated hydroxyanisole (BHA). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Seed oils from five legume cultivars of Phaseolus vulgaris, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.7–1.4 wt‐%), steryl esters (SE; 1.7–3.3 wt‐%), triacylglycerols (TAG; 33.8–45.9 wt‐%), free fatty acids (FFA; 0.6–1.5 wt‐%), sn‐1,3‐diacylglycerols (1,3‐DAG; 0.3–1.0 wt‐%), sn‐1,2‐diacylglycerols (1,2‐DAG; 0.4–1.2 wt‐%) and phospholipids (PL; 49.4–58.8 wt‐%). Fatty acids derivatized as methyl esters were analyzed by gas chromatography (GC) and a flame ionization detector. Molecular species and the fatty acid distribution of TAG isolated from the total lipids in the beans were analyzed by a combination of argentation‐TLC and GC. A modified argentation‐TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 18 different groups of TAG, based on both the degree of unsaturation and the total length of the three acyl chains of fatty acid groups. SDT (3.2–4.2 wt‐%), M2T (3.8–5.0 wt‐%), D3 (4.8–5.9 wt‐%), MDT (8.0–13.9 wt‐%), D2T (12.5–15.8 wt‐%), MT2 (19.4–22.7 wt‐%), DT2 (17.8–23.5 wt‐%) and T3 (9.2–13.0 wt‐%) were the main TAG components. The dominant fatty acids of TAG were α‐linolenic (48.5–57.8 wt‐%) and linoleic (16.7–25.8 wt‐%) acids, with appreciable amounts of palmitic (8.3–13.2 wt‐%) and oleic (7.8–13.8 wt‐%) acids. The high content of α‐linolenic acid in the cultivars of P. vulgaris could very likely play a beneficial role in reducing the risk of coronary heart disease among the large populations consuming them in Japan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号