首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel spinning of UHMWPE fibers using low molecular weight polybutene (PB) as a new spin solvent was investigated. A 98/2 wt% PB/UHMWPE gel exhibits a melting temperature around 115°C and shows large‐scale phase separation upon cooling the solution to room temperature. The resulting precursor fiber from this gel was hot‐drawn to a ratio of 120, yielding a fiber with tensile strength of 4 GPa and Young's modulus of over 150 GPa. Wide‐angle X‐ray diffraction indicates good molecular orientation along the fiber axis. The results also demonstrate the potential to further improve the mechanical properties. With respect to the gel spinning industry, this new solvent has a number of advantages over paraffin oil and decahydronaphthalene, and holds a promise of greatly improving the process efficiency. POLYM. ENG. SCI., 56:697–706, 2016. © 2016 Society of Plastics Engineers  相似文献   

2.
A new method for fast solvent removal in gel spinning was investigated. Instead of solvent evaporation or coagulation as conventionally used, the new method involves mechanically twisting the gel‐fiber along the fiber axis. By removing the majority of solvent in the gel‐fiber by mechanical twisting not only the emission of solvent vapor and the production of waste solvent mixture or coagulation byproducts are minimized but also the fiber production rate is significantly increased. The new solvent removal method was demonstrated through gel spinning of high‐strength ultrahigh‐molecular‐weight polyethylene fibers using both volatile and nonvolatile spin solvents. Approximately 90% of the spin solvent was removed by a single‐step twisting process and the resulting fiber retained the high mechanical properties conventionally obtained. A mechanistic model was developed for estimating the solvent removal as a function of twisting. With respect to the gel spinning industry, the new solvent removal method holds a promise of simplifying the solvent removal and recovery steps and improving the production rate, leading to more efficient and effective gel spinning processes. POLYM. ENG. SCI., 55:745–752, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A new twist‐gel spinning process for ultrahigh molecular weight polyethylene fibers is demonstrated which significantly increases the extraction rate of nonvolatile spin solvent while simultaneously reducing the consumption of extraction solvent by more than 75%. Applying twist to the gel fiber enables it to be directly hot‐drawn, allowing conventional solvent extraction to proceed significantly faster. While solvent extraction effectiveness is largely enhanced, the new process does not show reduced fiber properties. The tensile strength, Young's modulus, surface morphology, and geometry are relatively unaffected when compared to fibers produced using the conventional gel‐spinning process. The new twist‐gel spinning process is expected to improve the processing efficiency of gel‐spun high‐strength fibers, promoting broad expansion of these high performance fibers into applications that were previously prohibitive due to extremely slow production. POLYM. ENG. SCI., 55:1389–1395, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
Polyglycolic acid (PGA) fibers were prepared by melt‐spinning process in this report. The effects of spinning parameters, such as windup rates and drawn ratio, on the mechanical properties of the fibers were discussed by analyzing the internal stress of as‐spun fibers, axial sound velocity, fiber tenacity, etc. The results showed that windup rate had a slight effect on the macromolecular orientation degree of the as‐spun fibers, which was quite unusual for melt spinning, whereas, the subsequent drawing process effectively increased the macromolecular orientation degree of the PGA fibers and consequently increased the tensile strength of the fibers. Low internal stress of as‐spun fibers obtained at lower windup rate led to higher drawing ratio, and the drawn fibers possessed relatively excellent mechanical properties. As a contrast, higher windup rate resulted in the strong internal stress of the as‐spun fibers, which had a negative influence on the drawing process, and so the tensile strength of the drawn fibers was relatively poor. Therefore, PGA fiber with perfect mechanical performance could be prepared at the technical parameters of lower windup rate and higher drawing multiples as well as slow drawing rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Polyvinyl alcohol (PVA)/gelatin composite fibers containing carbon nanotubes (CNTs) had been prepared by wet‐spinning method. A remarkable increase of tensile strength of the PVA/gelatin fibers was achieved by adding small amount of CNT. The mechanism of reinforcement has been studied using a combination of differential scanning calorimetry (DSC), 2D wide‐angle X‐ray diffraction (2D‐WAXD) and scanning electron microscopy (SEM). SEM showed a decreased gelatin domain size by adding CNTs, suggesting a possible compatibilization effect between PVA and gelatin. On the other hand, an increased crystallinity and degree of orientation of PVA/gelatin fibers has been observed by adding CNTs. Thus, the increased compatibilization, crystallinity and degree of orientation in PVA/gelatin/CNTs composite fibers should be the reasons for the observed increase of mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

7.
This article describes a new gel‐spinning process for making high‐strength poly(ethylene oxide) (PEO) fibers. The PEO gel‐spinning process was enabled through an oligomer/polymer blend in place of conventional organic solvents, and the gelation and solvent‐like properties were investigated. A 92/8 wt% poly(ethylene glycol)/PEO gel exhibited a melting temperature around 45°C and was highly stretchable at room temperature. Some salient features of a gel‐spun PEO fiber with a draw ratio of 60 are tensile strength at break = 0.66 ± 0.04 GPa, Young's modulus = 4.3 ± 0.1 GPa, and a toughness corresponding to 117 MJ/m3. These numbers are significantly higher than those previously reported. Wide‐angle x‐ray diffraction of the high‐strength fibers showed good molecular orientation along the fiber direction. The results also demonstrate the potential of further improvement of mechanical properties. POLYM. ENG. SCI., 54:2839–2847, 2014. © 2014 Society of Plastics Engineers  相似文献   

8.
Polyamide 6 (PA6) fibers were prepared by CaCl2 complexation and the gel spinning technique. PA6 was partially complexed with CaCl2 for the purpose of suppressing interchain amide group hydrogen bonding. The fibers were characterized with scanning electron microscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. In the gel spinning process, a mixed tetrachloroethane and chloroform solution was chosen as the coagulation bath after a comparison of different types of solutions. From our investigation of the morphology, structure, and mechanical properties of gel‐spun and hot‐drawn fibers, it was indicated that the modulus and tensile strength increased with increasing draw ratio, the orientation of the fibers was improved, and the cross section of the PA6 gel fibers became more smooth and tight. The results from the XRD, DSC, and FTIR tests indicated that calcium metal cations complexed with the carbonyl oxygen atoms of PA6. The maximum modulus and tensile strength values obtained in this study were 28.8 GPa and 413 MPa, respectively, at a draw ratio of 8. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
An ultra‐high molecular weight polyethylene (UHMW‐PE) fiber was prepared by gel spinning using general kerosene as the solvent and gasoline as the extraction solvent. The process of the phase separation of gel as‐spun, spun under various spinning conditions, was investigated. Its extracting and drying process were also studied. The results reveal that the gel as‐spun, spun under a lower spin draft and a lower spin quenching temperature, extracted in times and dried under free‐shrinkage, exhibits a good afterdrawability that eventually endows the fiber with excellent mechanical behaviors. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 670–675, 1999  相似文献   

10.
The concentrations and temperatures of ultrahigh‐molecular‐weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80°C. Tremendously high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120–140°C, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as‐spun fibers. At each spinning temperature, the achievable draw ratios obtained for as‐spun fibers prepared near the optimum concentration are significantly higher than those of as‐spun fibers prepared at other concentrations. The critical draw ratio of the as‐spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150°C. Further investigations indicated that the best orientation of the precursors of shish‐kebab‐like entities, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as‐spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as‐spun fibers, the birefringence and tensile properties of the draw fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.  相似文献   

11.
This investigation aims to improve the ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers by incorporating small amounts of functionalized activated nanocarbon particles with a wide range of specific surface areas (ca. 100–1,400 m2/g) during gel spinning processes of UHMWPE fibers. The ultradrawing, ultimate tensile, orientation properties, and “microfibril” characteristics of UHMWPE/functionalized activated nanocarbon fibers was discovered to improve considerably with the increase in specific surface areas of functionalized activated nanocarbon. An extraordinary high ultimate tensile strength at 95.8 g/d was obtained for the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber. This value is the highest value ever reported for one‐stage drawn UHMWPE fibers and is about 2.9 times that of the UHMWPE drawn fiber prepared in this study. In addition to thermal, ultimate tensile, and orientation factor properties of as‐prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers, specific surface area, Fourier transform infrared, and morphological analyses of original and functionalized activated nanocarbons were performed to comprehend the considerably improved ultradrawing, ultimate tensile properties, and microfibril characteristics of the UHMWPE/functionalized activated nanocarbon fibers. POLYM. ENG. SCI., 58:980–990, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
Poly(4,4′‐diphenylsulfone terephthalamide) referred to as all para‐position polysulfonamide (all para‐position PSA) is a special kind of PSAs, copolymer s of 3,3′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylsulfone, and terephthaloyl chloride. However, with the increasing para‐structure content in the PSAs, the PSA shows very poor solubility in common amide‐type polar aprotic solvents and cannot be used for wet spinning. In this article, it was found that all para‐position PSA can be easily dissolved in N,N‐Dimethylacetamide (DMAc)/LiCl system, and then the all para‐position PSA fiber was prepared for the first time by wet spinning. The properties of all para‐position PSA pulps and fibers were investigated via Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy, thermal gravimetric analysis, dynamical mechanical analysis, X‐ray diffraction (XRD), and tensile strength testing. The tensile strength, elongation at break, and crystallinity of the resulting fiber were 4.4 cN/dtex, 15.9%, and 33.53%, respectively. The results indicated that all para‐position PSA fiber was a high‐temperature resistance fiber with better mechanical properties than common PSA fiber. The improved tensile strength of the fiber will expand its applications and may take place of Nomex in certain fields and become a new generation of flame retardant and high‐temperature resistant material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Keratin–poly(vinyl alcohol) (PVA) blend fibers containing 13–46 wt % of –SSONa+ (S‐sulfo) keratin were prepared by the wet‐spinning technique. They were formed by dehydration of an aqueous solution of S‐sulfo keratin and PVA (spinning dope) in a coagulation bath of sodium sulfate–saturated solution and subsequently drawn. Keratin–PVA fibers showed higher tenacity than that of wool, presumably originating from the high mechanical strength of the PVA component. The heat treatment at about 200°C improved the waterproof characteristics such as shrinkage of keratin–PVA fibers more conspicuously than did PVA fibers. That is, after heat treatment at 195°C for 10 min, keratin–PVA blend fiber shrank 20% in water at 60°C, whereas PVA fiber shrank 56%. Differential thermal analysis suggested the crosslinking of disulfide bonds between keratin molecules during the heat treatment, whereas the additional crystallization of PVA component was not observed. Adsorption of heavy metal and toxic gas to keratin–PVA fibers was also investigated. Keratin–PVA fiber was found to adsorb Ag+ and formaldehyde gas more efficiently than PVA. Thus, blends of keratin and PVA were advantageous for both polymer fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 756–762, 2004  相似文献   

14.
A novel poly(acrylic acid‐g‐gelatin)/graphite composite is synthesized by aqueous solution polymerization. Based on the electrical conductivity of graphite nanoplatelets and the absorbency of poly(acrylic acid‐g‐gelatin)/graphite, a novel conducting gel with a conductivity of 3.18 mS cm?1 is prepared. The effects of synthesis parameters on the electrical conductivity of the gels are investigated in detail. An appended network structure model of the poly(acrylic acid‐g‐gelatin)/graphite conducting gel is proposed. The conducting gel presents a high mechanical strength in cyclohexane, which is important for the gel applications. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
以聚合度2000的聚乙烯醇(PYA)为原料,采用干湿法凝胶纺丝制备PVA初生纤维,经拉伸、热定型后,在苯胺(ANI)溶液中浸渍聚合制备PVA/PANI导电纤维,研究了导电纤维的结构与性能。结果表明:采用干湿法制备的PVA初生纤维在常温下拉伸2倍,经ANI溶液浸渍聚合,得到的PVA/PANI导电纤维的体积电阻率达34Ω·cm,该导电纤维直接热定型后断裂强度达2.8 cN/dtex。  相似文献   

16.
Polyvinylidene fluoride hollow fibers were prepared by melt‐spinning technique under three spinning temperatures. The effects of annealing treatment on the structure and properties of hollow fiber were studied by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), tensile test, and scanning electron microscopy (SEM) measurements. DSC and WAXD results indicated that the annealing not only produced secondary crystallization but also perfected primary crystallization, and spinning and annealing temperature influenced the crystallinity of hollow fiber: the crystallinity decreased with the increase of spinning temperature; 140°C annealing increased the crystallinity, and hardly influenced the orientation of hollow fiber; above 150°C annealing increased the crystallinity as well, and furthermore had a comparative effect on the orientation. The tensile tests showed that the annealed samples, which did not present the obvious yield point, exhibited characteristics of hard elasticity, and all the hollow fiber had no neck phenomenon. Compared with the annealed sample, the precursor presented a clear yield point. In addition, the annealed samples had a higher break strength and initial modulus by contrast with the precursor, and the 140°C annealed sample showed the smallest break elongation. SEM demonstrated the micro‐fiber structure appeared in surface of drawn sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 935–941, 2007  相似文献   

17.
Polyacrylonitrile based porous hollow gel fibers were prepared from PAN hollow fibers by oxidation and subsequent alkaline treatment. Fourier‐transform infrared (FTIR), X‐ray diffraction, and scanning electron microscope (SEM) analyses showed that the PAN porous hollow gel fiber was a kind of amphoteric fiber due to the combination of cationic groups of pyridyl and anionic groups of carboxyl; after gelation the hollow channel and finger‐like pores on the fiber walls were conserved. The effects of cyclization reaction degree, alkaline solution concentration, and alkaline treatment time on the mechanical properties or pH‐sensitive behavior of the porous hollow gel fibers were investigated. The elongation/contraction behavior was studied in detail. It was found that the gel fiber exhibited a large swelling in an alkaline solution and contracting in an acid solution; the swelling change in length was above 90%; the responsive time of elongation/contraction was less than 20 s; the maximum contraction force was 20 N/cm2; and pH‐sensitivity was reversible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
We determined that a poly(ethylene terephthalate) microfiber was easily obtained by irradiating a carbon dioxide laser to an annealed fiber. The annealed fiber was prepared by zone drawing and zone annealing. First, an original fiber was zone drawn at a drawing temperature of 90°C under an applied tension of 4.9 MPa, and the zone‐drawn fiber was subsequently zone annealed at 150°C under 50.9 MPa. The zone‐annealed fiber had a degree of crystallinity of 48%, a birefringence of 218.9 × 10?3, tensile modulus of 18.8 GPa, and tensile strength of 0.88 GPa. The microfiber prepared by laser heating the zone‐annealed fiber had a diameter of 1.5 μm, birefringence of 172.8 × 10?3, tensile modulus of 17.6 GPa, and tensile strength of 1.01 GPa. The draw ratio estimated from the diameter was 9165 times; such a high draw ratio has thus far not been achievable by any conventional drawing method. Microfibers may be made more easily by laser heating than by conventional technologies such as conjugate spinning. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1955–1958, 2003  相似文献   

19.
The carbon nanotubes (CNTs) contents, ultrahigh‐molecular‐weight polyethylene (UHMWPE) concentrations and temperatures of UHMWPE, and CNTs added gel solutions exhibited significant influence on their rheological and spinning properties and the drawability of the corresponding UHMWPE/CNTs as‐prepared fibers. Tremendously high shear viscosities (ηs) of UHMWPE gel solutions were found as the temperatures reached 140°C, at which their ηs values approached the maximum. After adding CNTs, the ηs values of UHMWPE/CNTs gel solutions increase significantly and reach a maximum value as the CNTs contents increase up to a specific value. At each spinning temperature, the achievable draw ratios obtained for UHMWPE as‐prepared fibers prepared near the optimum concentration are significantly higher than those of UHMWPE as‐prepared fibers prepared at other concentrations. After addition of CNTs, the achievable draw ratios of UHMWPE/CNTs as‐prepared fibers prepared near the optimum concentration improve consistently and reach a maximum value as their CNTs contents increase up to an optimum value. To understand these interesting drawing properties of the UHMWPE and UHMWPE/CNTs as‐prepared fibers, the birefringence, thermal, morphological, and tensile properties of the as‐prepared and drawn fibers were investigated. Possible mechanisms accounting for these interesting properties are proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
This study examined the effect of the ultradrawing behavior of gel film specimens of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and UHMWPE/low‐molecular‐weight polyethylene (LMWPE) blends on their physical properties. The concentration of a gel film approximated its critical concentration at a fixed drawing temperature; its achievable draw ratio was higher than that of other blend specimens with various concentrations. Noticeably, when about 5 wt % LMWPE was added to a UHMWPE/LMWPE gel film specimen, the achievable draw ratio of the gel film increased, and this contributed to an apparent promoting effect on its anticreeping properties and thermal stability. Therefore, when ULB?0.9 was drawn to a draw ratio of 300, the anticreeping behavior was improved to less than 0.026%/day. Moreover, with respect to the thermal stability, when the same specimen was drawn to a draw ratio of 300, the retention capability of its storage modulus could resist a high temperature of 150°C, which was obviously much higher than the temperature of an undrawn gel film specimen (70°C). To study these interesting behaviors further, this study systematically investigated the gel solution viscosities, anticreeping properties, dynamic mechanical properties, thermal properties, molecular orientations, and mechanical properties of undrawn and drawn UHMWPE/LMWPE gel film specimens. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号