首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Fatigue life of magnesium laserbeam‐welds (AZ31 and AZ61 alloys) was assessed experimentally under variable amplitude loadings. The specimens were subjected to load‐controlled cyclic loadings. The tests were carried out using a Gauss‐distributed amplitude sequence of length L= 5 · 104 cycles and loading ratio R = –1 under pure axial, pure torsion as well as in‐phase and out‐of‐phase combined loadings. The notch stresses were obtained from a linear‐elastic FE‐model using the reference radius approach with rref  = 0.05 mm. The stress‐based hypotheses were applied: Effective equivalent stress hypothesis (EESH), shear stress intensity hypothesis (SIH), Findley, and modified Gough‐Pollard. A non‐proportionality factor is introduced and steps required for computing are presented in order to improve fatigue life assessment under non‐proportional loadings.  相似文献   

2.
《Strain》2018,54(5)
We propose a novel sensitivity based approach that predicts and explains the accuracy of material parameter identification for a composite plate using the Projected Finite Element Update Method. A typical experiment using the Projected Finite Element Update Method technique involves a plate specimen held at 3 or 4 supports and bent under the application of a point load. Two‐Dimensional Digital Image Correlation is used to measure the pseudo displacements resulting from the projection of out‐of‐plane deflection of the plate onto the image plane. A cost function relating the projected numerical and experimental displacement fields is then minimised to obtain the material parameters. It is shown that the contribution of a specific material parameter in the observed displacement field influences the accuracy of its identification. The contributions from material parameters are first quantified in terms of sensitivity criterion that may be tailored by changing the elements of test configuration such as location of supports, the load application point, and the specimen geometry. Several test configurations are designed by maximising the sensitivities corresponding to individual material parameters. The relevance of proposed sensitivity criterion in these configurations is then validated through material identification in simulated experiments with added Gaussian noise. Finally, a thin CFRP plate is tested under these configurations to demonstrate the practical use of this approach. The proposed approach helps in robust estimation of the in‐plane elastic moduli from a bent composite plate with a simple Two‐Dimensional Digital Image Correlation setup without requiring measurement of the actual plate deflection or curvatures.  相似文献   

3.
Masonry structures are a sustainable, economical and traditionally widely used type of construction. However, current masonry design codes are rather conservative, so there is a growing need for revision i.e. calibration of safety factors to improve the allocation of material resources. In this paper, we investigate the probability of occurrence of slip failure along head joints (perpends) in masonry subjected to in‐plane loading. An appropriate limit state function is established and the masonry material properties and loads are defined as random variables in order to simulate likelihood of occurrence of a slip failure regime along the head joints. Furthermore, an example of masonry wall with probabilistic analysis outcomes using Monte Carlo simulation is presented and recommendations for further work are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号