首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, grid‐connection of wind power generators was evaluated from the viewpoint of frequency fluctuation. Wind power generation is a power generation method that depends on natural energy, and there is some concern that it may exert a negative influence on electric power quality. As a result, it is necessary to maintain high electric power quality when wind power generation is connected to the grid. The AC link method, the AC‐DC link method, and the DC link method are alternatives for grid connection of wind power generators. The model system was constructed with the use of a synchronous generator and an induction generator as wind power generator, and verification experiments were performed. Verification experiments using the various grid‐connection methods for each generator were conducted. The steadiest frequency characteristic was obtained in the DC link method. In particular, the stability level was highest in the wind power generation system using the DC link method with a wound‐rotor induction generator. Generally, induction generators are grid‐connected by the AC link method. Therefore, grid‐connection of induction generators by the DC link method appears effective from the viewpoint of frequency fluctuation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 178(3): 21–30, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21196  相似文献   

2.
双馈风力发电机组系统接入与稳定运行仿真   总被引:1,自引:0,他引:1  
赵清声  王志新 《电网技术》2007,31(22):69-74
分析了包含大量异步风力发电机组的风电场并网运行后对电力系统静态和动态稳定性的影响。从系统接入和稳定运行的角度研究了双馈风力发电机组及普遍采用的定子磁链定向矢量控制策略在提高风电系统稳定性方面的优势与不足。以实际机组为例在PSCAD/EMTDC平台上建立了仿真模型,结果表明双馈风力发电机组在风速发生变化时不仅能够以变速恒频方式运行并追踪最大风能,且电网电压也比传统鼠笼式风力发电机组更为稳定。在系统发生最严重的三相接地故障时,风电场具有更好的暂态稳定性。  相似文献   

3.
含不同风电机组的风电电网仿真研究   总被引:8,自引:3,他引:5  
邢文琦  晁勤 《电网技术》2009,33(7):99-102
为了研究包含恒速异步风力发电机和双馈异步风力发电机的风电场对电网的影响,应用Matlab 7.0建立了含不同风电机组的风电场动态模型。分析了风电场对电网暂态稳定性的影响,风电机组电压恢复情况,有功、无功变化情况,以及不同风电机组的低电压穿越能力。仿真结果表明:双馈异步风力发电机变速平稳、低电压穿越能力较强,有利于优化电能质量;当电网发生故障时,应针对不同的风电机组采取不同的控制策略以提高电力系统稳定性。  相似文献   

4.
The increasing power demand has led to the growth of new technologies that play an integral role in shaping the future energy market. Keeping in view of the environmental constraints, grid connected wind turbines are promising in increasing system reliability. This paper presents the impact of FACTS controllers on the stability of power systems connected with wind energy conversion systems. The wind generator model considered is a variable speed doubly fed induction generator model. The stability assessment is made first for a three phase short circuit without FACTS controllers in the power network and then with the FACTS controllers. The dynamic simulation results yield information on (i) the impact of faults on the performance of induction generators/wind turbines, (ii) transient rating of the FACTS controllers for enhancement of rotor speed stability of induction generators and angle stability of synchronous generators. EUROSTAG is used for executing the dynamic simulations.  相似文献   

5.
In recent years, awareness of environmental problems is growing, and the price of electric power purchased by electric companies has been expensive for power plants utilizing natural energy. Thus, the introduction of wind power generation is being promoted in Japan. Generally, squirrel‐cage induction machines are widely used as generators in wind power generation systems because of their small size, light weight, and low cost. However, the induction machines do not have a source of excitation. Thus, inrush currents and instantaneous voltage drops occur when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generators are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of the AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in a wind power generation system, and demonstrate the validity of this system by simulated and experimental results. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 154(2): 58–67, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20254  相似文献   

6.
针对带串联补偿装置的并网双馈风力发电机组轴系扭振模式的稳定性,搭建了风力发电机轴系的三质量块等效模型,用小扰动法分析了轴系不同质块间的扭振模式。基于矩阵束算法辨识串联补偿度对风电场发电机组轴系扭转模式稳定性的影响,分析表明在故障情况机组轴系可能发生暂态扭矩放大。在PSCAD/EMTDC中搭建了某实际风电场中风力机轴系和发电机电磁暂态模型以及电网其它部分模型。仿真结果表明:电网故障会引发轴时系扭振模式不稳定现象,同时验证了串联补偿影响轴系扭振模式的稳定性。  相似文献   

7.
In this paper we present a transient current analysis of induction generators used in a wind power system before and after three‐phase fault conditions. First, the basic equations of an induction generator connected to an infinite bus are developed and then transient current analysis formulas are derived for a three‐phase fault before and after fault clearance. We also determine the initial phase angle for the three‐phase fault or the restoration phase angle of the power supply voltages and the time at which the maximum or minimum transient currents flow in the system. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 148(1): 38–45, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10319  相似文献   

8.
风电机组等效模型对机组暂态稳定分析结果的影响   总被引:5,自引:1,他引:4  
该文应用等效集中质量法,建立了同时考虑风力机叶片弯曲柔性以及风力机和发电机之间传动轴扭转柔性的风力机3个质量块等效模型。结合并网笼型异步发电机的电磁暂态模型,以额定功率330 kW(MADE-AE30)和3 MW的风力发电机组为例,在电网电压骤降和机械大扰动下,与风力机传统1个、2个质量块等效模型的机组暂态稳定性进行了  相似文献   

9.
以改善风电场接入的电力系统稳定性并降低稳定控制对场内机组负面影响为目标,设计基于变速风电机组的电力系统综合稳定控制器.控制器基于广域信息,应用同步机状态反馈,通过风电场衰减系统故障不平衡能量以提高同步机主系统暂态稳定性;考虑风电场与同步机关联程度的差异,  相似文献   

10.
大规模双馈风电集中接入对电网中传统同步机组暂态功角稳定有重要影响。将双馈风电机组近似等效为恒功率源,基于等面积定则分析了不同故障时段双馈风机等容量替代同步机组时同步机组暂态功角的变化,考虑了不同三相接地故障过渡电阻对同步机组功率特性的影响,据此分析了风电场并网运行时对系统暂态稳定影响的机理。理论分析表明,当过渡电阻值较小时,双馈风机接入增强了系统暂态功角稳定性,当过渡电阻值较大时,可能降低了系统暂态功角稳定性,对风机并网产生不利影响。通过PSCAD/EMTDC仿真验证了所提观点的正确性。  相似文献   

11.
With increasing penetration of wind farms, power grids have responded by developing specific grid codes to maintain their stability. One of the main grid codes is the low‐voltage ride‐through (LVRT) capability, which requires the wind generator to remain connected when the grid voltage sags for a certain time period. A wind farm with squirrel cage induction generators suffers this LVRT problem the most because of their direct connection to the grid and reactive power consumption. In this paper, a new method is proposed to solve this problem by shunt‐connecting a motor‐driven mechanical load to the cage wind generator. For driving mechanical loads, the induction motor is most widely used in industries. This paper studies the terminal voltage holding effect of an induction machine during grid voltage sag due to the magnetic flux holding effect and the saturation characteristic. Taking advantage of this effect, the induction motor that is used for driving mechanical load is then proposed to improve the LVRT capability of wind turbine generators. Furthermore, the change of the rotating speed or slip of the induction machine is found to have a great impact on improving the LVRT. By adding some inertia to the motor‐driven mechanical load, an enhanced voltage holding effect, and therefore LVRT improvement, is expected for the wind farm. Both simulation and experimental results prove the effectiveness of the proposed method. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

12.
Increasing levels of wind-turbine generation in modern power systems is initiating a need for accurate wind-generation transient stability models. Because many wind generators are often grouped together in wind parks, equivalence modeling of several wind generators is especially critical. In this paper, a reduced-order dynamic fixed-speed wind-generator model appropriate for transient stability simulation is presented. The model is derived using a model reduction technique of a high-order finite-element model. Then, an equivalencing approach is presented that demonstrates how several wind generators in a wind park can be combined into a single reduced-order model. Simulation cases are presented to demonstrate several unique properties of a power system containing wind generators. The results in this paper focus on horizontal-axis turbines using an induction machine directly connected to the grid as the generator.  相似文献   

13.
In order to obtain wind energy effectively, the pole‐change‐type induction generators are used as the wind turbine generators. Otherwise, the pole‐change‐type induction generator causes the voltage dips at pole changing time. To maintain the power quality, it is important to know the state change of the generator operation. Therefore, the authors have studied a state criterion of generator using the tower shadow effect, which is the active power oscillation caused by a rotation torque drop when the tower and the turbine blade overlap each other. In this paper, an improved identification method of oscillation frequency, which is the criterion of wind turbine generator operation, is proposed. The proposed method is applied to measured data and good results are obtained. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 162(1): 25–31, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20395  相似文献   

14.
传动链模型参数对双馈风电机组暂态性能影响   总被引:2,自引:0,他引:2  
为了较准确地研究并网双馈风电机组机电耦合作用对其暂态性能的影响,考虑风力机和发电机之间传动轴扭转柔性因素,采用等效集中质量法,建立风力机传动链的等效为两个质量块模型.基于并网双馈风力发电机组的功率控制策略和电磁暂态模型,在电网电压跌落故障下,对采用两个等效质量块传动链模型时的机组暂态运行性能进行仿真,并和不考虑传动链柔性的等效为一个质量块模型时的结果进行比较.应用传动链柔性模型,选取不同参数值时的机组暂态效果进行仿真比较和分析.结果表明:考虑风力机传动链柔性有助于准确分析双馈风力发电机组暂态性能,其暂态性能和传动轴系刚度系数、风力机和发电机惯性时间常数密切相关.  相似文献   

15.
SVC与桨距角控制改善异步机风电场暂态电压稳定性   总被引:18,自引:6,他引:12  
研究了改善异步机风电场暂态电压稳定性的措施。基于普通异步机的恒速风电机组是目前世界上应用最为广泛的风电机组之一,由于其发出有功功率的同时吸收无功功率,会导致接入风电地区电网的电压稳定性降低。文中在DIgSILENT/PowerFactory中建立了静止无功补偿器(SVC)控制模型及风电机组桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对异步机风电场与电网暂态电压稳定性的贡献。研究结果表明,在接入风电地区电网发生三相短路的大扰动故障时,SVC能够有效地帮助恒速风电机组在故障后恢复电压,提高输出的电磁功率,桨距角控制能够有效地降低恒速风电机组的输入机械功率,以上2种措施能够避免风电机组机械与电磁功率不平衡引起的异步发电机超速及电压失稳;采用SVC及风电机组桨距角控制能够改善异步机风电场的暂态电压稳定性,确保风电机组连续运行及电网安全稳定。  相似文献   

16.
Recently, doubly fed induction generators (DFIG) and synchronous generators have been applied mostly to wind power generation, and variable speed control and power factor control have been implemented for high efficiency of wind energy capture and for high quality of power system voltage. In variable speed control, the wind speed or generator speed is used for maximum power point tracking. However, the properties of wind generation power fluctuations due to wind speed variation have not yet been investigated for those forms of control. The authors discuss power smoothing by these forms of control for DFIG interconnected to a 6.6‐kV distribution line. The performance is verified by means of the power PSCAD/EMTDC system simulation software for actual wind speed data and is investigated by using an approximate equation for wind generation power fluctuations as a result of wind speed variation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 177(2): 10–18, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.20958  相似文献   

17.
王杰  彭志炜  田宇  高勇 《电测与仪表》2021,58(5):112-118
在风电场中占较大比例的双馈风机由于具有不同于同步发电机的运行特性,使得如今风电的大规模接入对系统的暂态稳定造成了新的影响。文章介绍了传统电力系统的扩展等面积定则;推导出能够基于扩展等面积定则进行理论分析、且可以反映故障后风电机组功率控制对系统暂态稳定性影响机理的表达式;利用DIg SILENT/Power Factory对相关算例进行数字仿真验证,为今后制订风电机组故障穿越功率控制策略奠定基础。  相似文献   

18.
覃晖  张菁 《南方电网技术》2011,5(2):122-126
本文探讨了双馈型风电场并网后对地区电网动态稳定性的影响。建立了风电机组的空气动力学模型、轴系模型及桨距角控制系统模型;并在此基础上推导了风电场接入后的地区电网动态稳定特征值分析的状态矩阵。对风电机组接入的广西电网动态稳定性的影响进行全面的仿真分析,仿真证明,通过调整风电场的接入位置,以及采用变速风电机组的稳定控制模型,这两种方式能够有效改善系统阻尼,增强系统动态稳定性。  相似文献   

19.
For the stability of power systems including large‐scale generation of wind power, wind farms are expected to fulfill the requirement with the capability to remain connected to the systems during a momentary voltage dip occurring in power networks. This has prompted many utilities to adopt the low‐voltage ride‐through (LVRT) of wind turbine generators (WTGs) as one of the requirements in interconnection of large wind farms. This paper presents a new method of pitch angle control for fixed‐speed wind turbine (FSWT) to achieve LVRT capability improvement. The FSWT is equipped with directly grid‐coupled squirrel‐cage induction generator and the LVRT behavior of such wind turbine is closely related to the overspeeding of wind turbine rotor during voltage dip. If the turbine rotor speed can be reduced quickly during voltage dip so as not to rise over the maximum speed, then the sudden disconnection of WTG can be avoided. The proposed pitch control system can modify the pitch angle in the short response time by the coordination of protective relay. Then the pitch angle is adjusted by a feedback proportional integral controller based on the measurement of induction generator terminal voltage. Simulation study shows that the application of the proposed pitch control system can improve the LVRT performance of a wind farm equipped with FSWTs. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
In wind energy conversion system, variable speed operation is becoming popular nowadays, where conventional synchronous generators, permanent magnet synchronous generators, and doubly fed induction generators are commercially used as wind generators. Along with the existing and classical solutions of the aforementioned machines used in wind power applications, the switched reluctance generator (SRG) can also be considered as a wind generator due to its inherent characteristics such as simple construction, robustness, low manufacturing cost, etc. This paper presents a novel speed control of switched reluctance generator by using adaptive neural network (ANN) controller. The SRG is driven by variable speed wind turbine and it is connected to the grid through an asymmetric half bridge converter, DC-link, and DC-AC inverter system. Speed control is very important for variable speed operation of SRG to ensure maximum power delivery to the grid for any particular wind speed. Detailed modeling and control strategies of SRG as well as other individual components including wind turbine, converter, and inverter systems are presented. The effectiveness of the proposed system is verified with simulation results using the real wind speed data measured at Hokkaido Island, Japan. The dynamic simulation study is carried out using PSCAD/EMTDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号