首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: A new generation granular activated carbon—Bio‐Sep® beads—consist of 25% polymer (Nomex) and 75% powdered activated carbon. The porous structure and high surface area of these beads make them suitable for sorbent in adsorption columns, and for immobilization media in bioreactors. The aim of this study was to study the sorption characteristics of Bio‐Sep® beads for methyl t‐butyl ether (MTBE) and t‐butyl alcohol (TBA), and to demonstrate the advantage of their usage in a suspended growth bioreactor. RESULTS: The maximum uptake capacity of Bio‐Sep® beads for MTBE and TBA, in the studied concentration range (10–100 mg L?1), was observed to be 9.73 and 6.23 mg g?1, respectively. A 52 h desorption experiment resulted in 13.6–42.2% MTBE and 33–53% TBA desorption corresponding to the initial solid phase concentrations of 1.68–9.73 mg g?1 and 1.41–6.23 mg g?1, respectively. The sorption of TBA on the Bio‐Sep® beads was significantly hindered by the presence of MTBE. The addition of 10 g Bio‐Sep® beads (dry weight) in a suspended growth bioreactor was able to eliminate the inhibitory effect of 150 mg L?1 MTBE. CONCLUSIONS: At an equilibrium aqueous phase concentration (Ce) of 1 mg L?1, the solid phase concentration (qe) on Bio‐Sep® beads were observed as 1.44 and 0.47 mg g?1 for MTBE and TBA, respectively. The results obtained in this study indicate that Bio‐Sep® beads have reasonable sorption and desorption characteristics, which can be successfully exploited for the removal/degradation of toxic organic pollutants in high rate bioreactors. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
The objective of this investigation was to study the biosorption of Cr (VI) on immobilised activated sludge (IAS) and calcium alginate (CA) using batch system. The optimal pH for Cr (VI) biosorption by IAS and CA was 2.0 and 4.0, respectively. Equilibrium was attained at approximately 120 min for both biosorbents. For both biosorbents, the equilibrium biosorption capacity (mg/g) increased as the initial metal ion concentration increased and the concentration of biosorbent decreased. The rate of biosorption onto IAS and pure CA (as mg/g) increased from 5.02 to 87.66 and 4.97 to 79.09 as the concentration of Cr (VI) ions increased from 10 to 1000 mg/L, respectively. In the case of biosorbent concentration, as the concentration of IAS and pure CA increased from 1 to 20 g/L, the equilibrium uptake (qe) decreased from 21.33 to 1.57 and 19.41 to 1.38 mg/g, respectively. The biosorption data showed that the Langmuir model was more suitable than the Freundlich model. Also, the results indicated that the pseudo‐second order model was the most suitable for Cr (VI) biosorption onto IAS and CA. © 2011 Canadian Society for Chemical Engineering  相似文献   

3.
Alginate-immobilized Trichoderma asperellum were superior in adsorbing metals in single-metal systems compared to multi-metal systems. Higher amounts of Cu(II), Zn(II) and Cd(II) were adsorbed in single-metal systems with 72.00, 20.61 and 51.77 mg metal removed g?1 biosorbent, respectively, compared to multi-metal systems. On the contrary, only Pb(II) (112.70 mg g?1 biosorbent) was removed more efficiently in multi-metal systems. Both biosorbents showed similar biosorption behaviour, with higher uptakes of Zn(II) < Cd(II) < Cu(II) < Pb(II) in both single- and multi-metal systems. This was attributed to the carboxyl and hydroxyl functional groups on the surface of alginate.  相似文献   

4.
Dried waste activated sludge was used for copper removal from simulated waste water in this study. Unconditioned activated sludge (UAS) bound up to 35 mg Cu g?1, although there was significant leaching of organic material. Organic and copper leaching from the UAS increased significantly as the pH was reduced. Immobilization of UAS by sodium and calcium alginate was utilized in order to overcome the leaching problems, but reduced the adsorption capacity. Based on metal removal and organic leaching, calcium alginate‐conditioned UAS (CACAS) was found to be the most suitable sorbent for copper removal. Kinetic experiments showed that copper removal by both sodium alginate‐conditioned UAS (SACAS) and CACAS was faster than that by activated carbons, but slower than most of the other biosorbents described in the literature. FTIR spectroscopy identified a number of atomic groupings and structures in UAS relevant to copper adsorption. It suggested that hydrogen ions are replaced with copper ions. The Freundlich equation fitted the experimental isotherms better than the Langmuir equation. A computational model based on adsorption isotherm, external mass transfer and diffusion processes successfully described the kinetics of copper ion removal and suggested that the biosorption kinetics was controlled by mass transfer. © 2002 Society of Chemical Industry  相似文献   

5.
The aim of the present study is to investigate the influence of free, carboxymethyl cellulose (CMC) immobilised, PVA–alginate immobilised, and HCl treated rice husk on the removal of Direct Red‐31 and Direct Orange‐26 dyes. The biosorption capacity of the rice husk increased with HCl treatment (67.39 and 45.34 mg/g) and decreased with PVA–alginate immobilisation (9.73 and 10.03 mg/g) as compared to the free biomass (65.56 and 45.58 mg/g) at 200 mg/L dye concentration for Direct Red‐31 and Direct Orange‐26, respectively. Equilibrium data were best described by Langmuir Type 1 for Direct Red‐31 and Direct Orange‐26 (free, CMC immobilised, PVA–alginate immobilised, and HCl treated). Best correlation coefficients for Direct Red‐31 and Direct Orange‐26 using free, CMC immobilised, PVA–alginate immobilised, and HCl treated rice husk were obtained for pseudo‐second order and Elovich kinetic models. Values of Gibbs free energy (ΔG°) and enthalpy change (ΔH°) indicated that reaction was spontaneous and endothermic in nature at the studied temperatures. FT‐IR studies showed the involvement of carbonyl, carboxyl, and amide groups in the biosorption process. SEM exhibited the morphological changes on the biosorbent surface and BET analysis to determine the surface area is also carried out.  相似文献   

6.
Four kinds of bioreactor were evaluated for thorium removal by fungal biomass. Static-bed or stirred-bed bioreactors did not give satisfactory thorium removal probably because of poor mixing. An air-lift bioreactor removed approximately 90–95% of the thorium supplied over extended time periods and exhibited a well-defined breakthrough point after biosorbent saturation. The air-lift bioreactor promoted efficient circulation and effective contact between the thorium solution and the mycelial pellets. Of several fungal species tested, Rhizopus arrhizus and Aspergillus niger were the most effective biosorbents with loading capacities of 0.5 and 0.6 mmol g?1 respectively (116 and 138 mg g?1) at an inflow thorium concentration of 3 mmol dm?3. The efficiency of thorium biosorption by A. niger was markedly reduced in the presence of other inorganic solutes while thorium biosorption by R. arrhizus was relatively unaffected. Air-lift bioreactors containing R. arrhizus biomass could effectively remove thorium from acidic solution (1 mol dm?3 HNO3) over a wide range of initial thorium concentrations (0.1–3 mmol dm?3). The biotechnological application and significance of these results are discussed in the wider context of fungal biosorption of radionuclides.  相似文献   

7.
BACKGROUND: This paper evaluates the use of several biosorbents for Cu removal from aqueous solutions in the absence and presence of ethylenediaminetetraacetic acid (EDTA). The objective was to determine the applicability of the sorption process after conventional physicochemical wastewater treatment, or as primary treatment, replacing the physicochemical process. RESULTS: Fixed‐bed experiments were performed at Cu influent concentrations of 2 and 20 mg dm?3 and EDTA doses between 0 and 10 mg dm?3. At low Cu concentration without EDTA, Cu uptake capacity followed the order Posidonia oceanica > chitosan > chitin > Scharlau AC > Darco AC, with a maximum, at C/C0 = 0.2, of 23.2 mg g?1. In the presence of EDTA, Cu was detected in the effluent from the beginning of the operation, except for the activated carbons and chitosan at low EDTA doses. At higher EDTA doses, the activated carbons showed the best performance. Uptakes at Cu concentration of 20 mg dm?3 without EDTA were 51.6 (Posidonia oceanica) and 41.4 mg g?1 (chitosan) at C/C0 = 0.2. CONCLUSION: A sequence of one fixed bed with Posidonia oceanica followed by another with Scharlau AC should be an alternative to Cu precipitation, with Cu effluent concentration lower than 0.5 mg dm?3 for more than 350 pore volumes. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
The potential of wine industry wastes (grape peel, seed, and stem) as alternative biosorbents to remove Ag from aqueous media was investigated in this work. Wine industry wastes were washed, lyophilized and pulverized to obtain the biosorbents. The powdered biosorbents were characterized in detail and several batch experiments were performed to found the most suitable conditions for Ag biosorption. Kinetic, equilibrium, and thermodynamic studies were also performed. The interactions Ag-biosorbent were elucidated by analyses before and after the biosorption. For all wastes, the maximum removal percentages were found using a biosorbent dosage of 3.0?g?L?1 at pH of 7.0. The kinetic data were well represented by the pseudo-first-order model. The equilibrium was satisfactorily represented by the Sips model. The maximum biosorption capacities, found at 298?K, were: 41.7, 61.4, and 46.4?mg?g?1 for grape peel, seed, and stem, respectively. Thermodynamically, the biosorption was a spontaneous, favorable, exothermic, and enthalpy-controlled process. The magnitude of ΔH0 indicated a physical sorption. These results showed that the wine industry wastes can be considered alternative efficient, low-cost, and eco-friendly biosorbents to remove Ag from aqueous media.  相似文献   

9.
BACKGROUND: This research focuses on understanding the biosorption process and developing a cost‐effective technology for the treatment of water contaminated with phenolic compounds (phenol, 2‐chlorophenol and 4‐chlorophenol), which are discharged into the aquatic environment from a variety of sources and are highly toxic. In order to remove phenolic compounds from water, a new biobased sorbent is developed, blending chitosan with abrus precatorius, both naturally occurring biopolymers. The resulting chitosan–abrus precatorius blended beads (CS/Ab) were characterized by Brunauer, Emmett and Teller (BET) analysis, Fourier Transform Infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques under batch equilibrium and column flow experimental conditions. The binding capacity of the biosorbent was investigated as a function of initial pH, contact time, initial concentration of adsorbate and dosage of adsorbent. RESULTS: The percentage removal of phenol, 2‐CP and 4‐CP increased with increasing adsorbent dose, while the adsorption capacity at equilibrium, qe (mg g?1) (amount of phenol, 2‐CP and 4‐CP loaded per unit weight of adsorbent) decreased. The equilibrium time was found to be 240 min for full equilibration of all adsorbates. Adsorption kinetic and isotherm studies showed that the pseudo‐first‐order model and the Langmuir isotherm were the best choices to describe the adsorption behaviors. The maximum monolayer adsorption capacity of phenol, 2‐CP and 4‐CP on to the (CS/Ab) beads was found to be 156 mg g?1, 204 mg g?1 and 278 mg g?1, respectively. CONCLUSION: The experimental results suggested that (CS/Ab) blended beads are effective in the removal of phenolic compounds from aqueous medium. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
The synthesis of biodegradable environmentally friendly copolymeric beads for water treatment biosorption processes is demonstrated. The synthesized poly(methacrylamide) grafted aliginic acid copolymers were characterized using 1H NMR, Fourier transform infrared spectroscopy, TGA and SEM. The di‐block copolymers showed a morphological change from two‐dimensional layer‐by‐layer structures to three‐dimensional well‐compacted wrinkles as grafting efficiency increased. The copolymeric beads were formed from the di‐block copolymer and algae crosslinked with 5% calcium ions (w/w). These copolymeric beads were then subjected to biosorption investigations for zinc ions as a model heavy metal ion at different pH values and stirring time periods. Batch adsorption experiments showed that the copolymeric beads were effective in zinc ion removal from aqueous solutions with maximum uptake exceeding 89.0 mg g–1 using higher grafting efficiency copolymeric beads at pH 5.5. Equilibrium pH studies revealed that zinc biosorption was pH dependent and maximum uptake was obtained at pH 5.5. Dynamics studies showed that the biosorption of zinc was rapid with equilibrium attained within 40 min and the data followed pseudo‐second‐order kinetics. The equilibrium biosorption of zinc ions on the copolymeric beads exhibited a Freundlich isotherm fit. © 2012 Society of Chemical Industry  相似文献   

11.
Biosorption of Acid Red 57 (AR57) on to Neurospora crassa was studied with variation of pH, contact time, biosorbent and dye concentrations and temperature to determine equilibrium and kinetic models. The AR57 biosorption was fast and equilibrium was attained within 40 min. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models were applied to experimental equilibrium data for AR57 biosorption at various temperatures. The equilibrium data fitted very well to all the equilibrium models in the studied concentration range of AR57. Maximum biosorption capacity (qmax) of AR57 on to N. crassa was 2.16 × 10?4 mol g?1 at 20 °C. The kinetics of biosorption of AR57 were analyzed and rate constants were derived. The overall biosorption process was best described by a pseudo‐second‐order kinetic model. The changes in Gibbs free energy, enthalpy and entropy of biosorption were also evaluated for the biosorption of AR57 on to N. crassa. The results indicate that the biosorption was spontaneous and exothermic in nature. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
BACKGROUND: The removal of methylene blue from aqueous solution was studied using softstem bulrush (Scirpus tabernaemontani Gmel.) as the biosorbent. The effects of various parameters including contact time, biosorbent dosage, ionic strength and solution pH on the biosorption were investigated. RESULTS: The sorption capacity increased with an increase in biosorbent dosage and a decrease in ionic strength. The equilibrium time was found to be 240 min for full equilibration. Pseudo‐first‐order, pseudo‐second‐order, Bangham equation and intraparticle diffusion models were applied to fit the kinetic data, and the results showed that the sorption process followed the pseudo‐second‐order model. Equilibrium data conformed to Langmuir and Redlich–Peterson isotherm models, with a maximum monolayer biosorption capacity of 53.8 mg g?1 for the Langmuir isotherm at 18 °C. The value of ΔG was estimated to be ? 29.24 kJ mol?1, indicating the spontaneous nature of the biosorption. The biosorption process was strongly pH‐dependent and favourable at alkaline pH. CONCLUSION: Softstem bulrush, which is readily available and inexpensive, could be employed as a promising biosorbent for the removal of dye. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
《分离科学与技术》2012,47(13):2025-2030
In this study, the approach is to evaluate the use of Trichoderma asperellum biomass as a biosorbent for Cu2+ removal. Both live and dead cells are investigated. The feasibility of T. asperellum as biosorbent is further explored by pre-treating the cells and evaluating their subsequent Cu2+ removal efficacy. Results revealed that dead cells of T. asperellum attained biosorption equilibrium within the first 10 min of contact with Cu2+ while live cells reached equilibrium after 20 min. Dead cells also absorbed significantly higher amounts of Cu2+ (12.42 mg g?1) compared to live cells (5.69 mg g1). The biosorption mechanism for both live and dead cells of T. asperellum complied with the Langmuir isotherm and pseudo second-order kinetic, suggesting monolayer sorption. Pre-treatment of dead cells with alkali solutions (NaOH and laundry detergent) further improved sorption efficacy.  相似文献   

15.
The present paper reports the performance of a bioreactor packed with alginate-entrapped Kluyveromyces marxianus NCYC179 for continuous fermentation of whey permeate to ethanol. A maximum ethanol productivity as 28.21 gl?1 h?1 was attained at D=0.42h?1 and 75% lactose consumption (substrate feed rate in the inflowing medium was 200 g lactose I?1). However, the higher dilution rates (0.6-1.Oh?1) resulted in poor productivities and higher substrate washout in the effluent samples. The maximum specific ethanol production (qpi) and maximum specific lactose uptake (qsi) of the immobilised Kluyveromyces marxianus NCYC179 was found to be 3.88g ethanol/g immobilised cell/hx10?2 and 8.75g lactose consumed/g immobilised cell/hx10?2 respectively. A bead size of 2.5 mm in diameter and activation period of 24h of alginate beads in lactose solution (10%) prior to their packing in column reactor were found to support the efficient working of the bioreactor. The immobilised cell bioreactor system was operated continuously at a constant dilution rate of 0.15h?1 and 10% lactose for 562 h without any significant change in the efficiency (varied from 84 to 88% of theoretical) and viability of the entrapped yeast cells (dropped from 84 to 81%).  相似文献   

16.
BACKGROUND: This work fulfils the need to develop an eco‐friendly biosorbent, elucidating the mechanism of biosorption. Removal of Cr(VI) by Rhizopus arrhizus was investigated in batch mode. Enhancement in the performance of the biosorbent was attempted by pre‐treating the biomass with inorganic and organic acids, chelating agent, cross‐linker and an organic solvent followed by autoclaving. The surface characterization of the biomass was carried out by potentiometric titration, surface area analysis, infrared spectroscopy, chemical modification of the biomass and scanning electron microscopy. RESULTS: All the physico‐chemical treatments of the biosorbent improved Cr(VI) uptake compared with the native biomass (21.72 mg g?1). The highest biosorption capacity (31.52 mg g?1) was achieved after pre‐treating the biomass with 0.5 mol L?1 HNO3 followed by autoclaving. Surface characterization of the biomass using pHzpc, potentiometry and Fourier transform infrared (FTIR) analysis revealed the role of amino and carboxyl groups in Cr(VI) removal by electrostatic attraction. Chemical modification of amino and carboxyl groups significantly decreased Cr(VI) uptake capacity confirming their role in biosorption. SEM analysis showed adsorption of Cr(VI) on the biosorbent surface. CONCLUSION: Rhizopus arrhizus biomass proved to be an effective and low cost alternative biosorbent for removal of Cr(VI) from aqueous solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Biodegradation of phenol was studied using Pseudomonas pictorum (NCIM 2077) immobilized on alginate and activated carbon – alginate beads. Control experiments were also performed using free cells and non‐inoculated activated carbon – alginate beads. The entrapped alginate and activated carbon – alginate beads suffer from a concentration gradient for oxygen in the interior of the beads and hence free cells showed better degradation at lower concentrations of phenol. The results on entrapped alginate beads were modeled using response surface methodology which determines the dependency of the maximum percentage of phenol degraded as a function of the independent variables, namely initial phenol concentration, initial pH, temperature, and diameter of the immobilized beads. The predicted values are in close agreement with the experimental values with the coefficient of correlation equal to 0.9999 and 0.9993 for both P pictorum – alginate beads and activated carbon – P pictorum – alginate beads respectively. © 2002 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Gluconic acid (GA) production by immobilized cells of mutant Aspergillus niger ORS‐4.410 on polyurethane sponge (PUS) and calcium‐alginate (Ca‐alginate) was evaluated in repeated batches of solid state surface fermentation (SSF) and submerged fermentation (SmF) conditions, respectively, utilizing rectified grape must as carbon source. RESULTS: The passive immobilization of cells in fermentation medium solid support of having 0.4 cm3 cube size, 4% spore suspension, 0.6 g inoculum of PUS immobilized cells at 32 °C and 2.0 L min?1 resulted in the maximum GA production (88.16 g L?1) with a 92.8% yield, while the Ca‐alginate matrix with a 0.5 cm diameter bead size, 2–3% spore suspension, 15 g inoculum at 34 °C and 150 rpm agitation speed revealed 67.19 g L?1 GA with a 85.2% yield. Repeated use of PUS showed higher levels of GA (110.94 g L?1) in the third–fourth fermentation cycles with 95–98% yield and 22.50 g L?1 d?1 productivity under SSF that was 2.5‐fold higher than the productivity obtained from a typical fermentation cycle, and 54% greater than the productivity obtained with repetitive use of Ca‐alginate immobilized cells of A. niger under SmF. CONCLUSION: Using immobilized cells of A. niger in PUS, the rectified form of grape must can be utilized for GA production as an alternative source of carbohydrate by replacing the conventional fermentation conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Polyvinyl alcohol(PVA) bead crosslinked with boric acid has been widely utilized as a microorganism immobilization carrier. However, it has some disadvantages such as drastic cell viability loss, small adsorption capacity and mass transfer limitation. To improve upon these drawbacks, a new method to prepare PVA composite pieces with the addition of activated carbon (AC) and poly‐3‐hydroxybutyrate(PHB) was explored through a combination of freezing/thawing and the boric acid method and by using Tween‐80 to improve the mass transfer performance of hydrophobic organics. m‐Cresol and pyrene were used as representative compounds with benzene ring structures to model hydrophilic and hydrophobic organics in order to test the performance of PVA pieces. The results showed that, compared with the boric acid method alone, a combination of freezing/thawing and the boric acid method led to a decrease in total organic carbon(TOC) loss from 0.315 g g?1 to 0.033 g g?1 and increased the oxygen uptake rate(OUR) of microorganisms from 0.03 mg L?1·min?1 to 0.22 mg L?1 min?1. The m‐cresol equilibrium adsorption amount of the PVA‐SA(sodium alginate)‐PHB‐AC piece was 2.80 times that of the PVA‐SA piece. The diffusion coefficient of pyrene in the PVA‐SA‐PHB‐AC piece increased from 0.53×10?9 m2 min?1 to 2.30×10?9 m2 min?1 with increasing concentrations of Tween‐80 from 1000 mg L?1 to 5000 mg L?1. The PVA‐SA‐PHB‐AC composite carrier demonstrated great scope for immobilizing microorganisms for practical wastewater bio‐treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39837.  相似文献   

20.
BACKGROUND: In this study, the capability of low‐cost, renewable and abundant marine biomass Posidonia oceanica (L.) for adsorptive removal of anionic and non‐ionic surfactants from aqueous solutions have been carried out in batch mode. Several experimental key parameters were investigated including exposure time, pH, temperature and initial surfactant concentration. RESULTS: It was found that the highest surfactant adsorption capacities reached at 30 °C were determined as 2.77 mg g?1 for anionic NaDBS and as 1.81 mg g?1 for non‐ionic TX‐100, both at pH 2. The biosorption process was revealed as a thermo‐dependent phenomenon. Equilibrium data were well described by the Langmuir isotherm model, suggesting therefore a homogeneous sorption surface with active sites of similar affinities. The thermodynamic constants of the adsorption process (i.e. ΔG°, ΔH° and ΔS°) were respectively evaluated as ? 8.28 kJ mol?1, 48.07 kJ mol?1 and ? 42.38 J mol?1 K?1 for NaDBS and ? 9.67 kJ mol?1, 95.13 kJ mol?1 and ? 174.09 J mol?1 K?1 for TX‐100. CONCLUSION: Based on this research, valorization of highly available Posidonia oceanica biomass, as biological adsorbent to remove anionic and non‐ionic surfactants, seems to be a promising technique, since the sorption systems studied were found to be favourable, endothermic and spontaneous. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号