首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of fatty acid esters of 3‐chloropropane‐1,2‐diol (3‐MCPD) in edible oil products initiated food monitoring campaigns in many EU Member States. As the determination of 3‐MCPD esters was new to most laboratories, questions on the reliability of the produced analysis data were raised. In response to this, the Institute for Reference Materials and Measurements (IRMM) of the European Commission's Joint Research Centre (JRC) organised a proficiency test on the determination of 3‐chloropropane‐1,2‐diol esters (3‐MCPD esters) in edible oils. The aim of this proficiency test was to scrutinise the capabilities of official food control laboratories, private food control laboratories as well as laboratories from food industry to determine the 3‐MCPD esters content of edible oils. The study was carried out in accordance with “The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories” and ISO Guide 43. The test materials dispatched to the participants were: refined palm oil, extra virgin olive oil spiked with 3‐chloropropane‐1,2‐dioleate and 3‐MCPD standard solution in sodium chloride. Altogether 41 laboratories from 11 EU Member States, Switzerland and Macedonia subscribed for participation in the study. The analysis task was to determine the 3‐MCPD esters content as total 3‐MCPD content of the test samples. Participants were free to choose their analysis methods. In total, 34 laboratories reported results to the organisers of the study. The performance of laboratories in the determination of 3‐MCPD esters in edible oils was expressed by z‐scores. About 56% of the participants performed satisfactorily in the determination of 3‐MCPD esters in palm oil and 85% for the spiked extra virgin olive oil test sample. The study revealed that the direct transesterification of the sample without the prior removal of glycidol esters might lead to strong positive bias.  相似文献   

2.
3‐Monochloro‐1,2‐propanediol (3‐MCPD) is a contaminant in processed food well known for about 30 years. More recently, this compound has observed attendance due to its occurrence as fatty acid esters in edible oils and products derived from them. In this study, the first enzymatic approach to remove 3‐MCPD and its esters from aqueous and biphasic systems by converting it into glycerol is described. First, 3‐MCPD was converted in an aqueous system by an enzyme cascade consisting of a halohydrin dehalogenase from Arthrobacter sp. AD2 and an epoxide hydrolase from Agrobacterium radiobacter AD1 with complete conversion to glycerol. Next, it could also be shown, that the corresponding oleic acid monoester of 3‐monochloropropanediol‐1‐monooleic‐ester (3‐MCPD‐ester) was converted in a biphasic system in the presence of an edible oil by Candida antarctica lipase A to yield free 3‐MCPD and the corresponding fatty acid. Hence, also 3‐MCPD‐esters can be converted by an enzyme cascade into the harmless product glycerol. Practical applications: Since several reports have been recently published on the contamination of foods with 3‐MCPD and its fatty acid esters, there is a great demand to remove these compounds and an urgency to find useful methods for this. In this contribution, we present an easy enzymatic way to remove 3‐MCPD and its esters from the reaction media (i.e., plant oil) by converting it to the nontoxic glycerol. The method requires neither high temperature nor organic solvents.  相似文献   

3.
Heating tests of pure tri‐, di‐, and monoolein (TO, DO, and MO, respectively) with and without the addition of tetrabutylammonium chloride as a chloride source at 240°C revealed the characteristic reactions that generate 3‐monochloro‐1,2‐propanediol‐related materials (3‐MCPD‐RM) in each acylglycerol. 3‐MCPD‐RM were formed mainly from DO and MO, with only a small amount from TO. Glycidyl ester was the predominant class of 3‐MCPD‐RM generated from both DO and MO, and was increased continuously throughout the heating period with comparable rates in both DO and MO, which also generated 3‐MCPD esters with chloride in a short completion time with an achieved level that was fourfold higher for MO than for DO. The production of free glycidol and 3‐MCPD was confirmed only in heated MO, but not from TO and DO, in a closed heating system, although these compounds were never detected in oils heated under simulated distillation conditions using a gas stream. In a closed system, both free glycidol and 3‐MCPD were increased throughout the heating period, which differed from the esters. Since an interesterification reaction, which produced free glycerol, was observed only in heated MO, free glycerol might be one of the precursors for those free forms. For clarification, further investigation is required.  相似文献   

4.
To find new ways for reducing the potential of palm oil to form 3‐monochloropropane‐1,2‐diol (3‐MCPD) and glycidyl esters during refining it is helpful to know more about the influence of different precursors like diacylglycerols (DAGs) and monoacylglycerols (MAGs), lecithin, and chlorine containing compounds. After adding increasing amounts of the different precursors to a model oil obtained by removal of polar compounds from crude palm oil and heating the mixture under standardized conditions to 240°C for 2 h the contents of 3‐MCPD and glycidyl esters were analyzed according to the standard procedure of DGF C‐VI 18 (10). DAGs and MAGs were found to increase the potential of palm oil to form 3‐MCPD and glycidyl esters, but refined lecithin showed no influence. Sodium chloride as well as tetra‐n‐butylammoniumchloride (TBAC) led to higher contents of the esters. Whereas the addition of TBAC raised the amount of glycidyl esters as well as 3‐MCPD esters, sodium chloride largely raised the amount of 3‐MCPD esters. An addition of 5 mmol of sodium carbonate/kg model oil spiked with sodium chloride reduced the amount of glycidyl esters almost completely; the 3‐MCPD esters were reduced by 50%. About 1 mmol sodium hydrogen carbonate/kg oil reduced both 3‐MCPD and glycidyl esters almost completely. Practical applications : For the mitigation of the formation of 3‐MCPD esters and related compounds in refined edible oils, it is helpful to know more about the effect of different possible precursors. Using a broader data basis, it is possible to adopt the oil processing but especially the choice of the raw material to the demands of the market for lower contents of the esters in the refined products.  相似文献   

5.
In 2007 the oil producing industry and the downstream food processing industry were worried by the announcement that fatty acid esters of 3‐MCPD and later in 2008 that glycidyl esters have been found in different types of vegetable oils after processing. The reason for the concern was that the German Federal Institute for Risk Assessment assumed in a first statement the complete degradation of the esters to free 3‐MCPD and glycidol both classified by the International Agency for Research on Cancer (IARC) as possible and probably, respectively, carcinogenic to humans. In the meantime a lot of research has been done on these heat‐induced compounds to mitigate their formation during oil processing and today the content in vegetable oils could be remarkably lower if all approaches were implemented. This paper summarizes the different mitigation strategies and shows their effect on lowering the amount of 3‐MCPD and glycidyl esters in refined vegetable oils.  相似文献   

6.
Discrepancies in the analysis of 3‐chloropropane‐1,2‐diol (3‐MCPD) esters can be explained by the hypothesis that in some refined oils significant amounts of fatty acid esters of glycidol (glycidyl esters) are present in addition to 3‐MCPD esters. Glycidyl esters were separated from triacylglycerols by gel permeation chromatography (GPC) and detected by gas chromatography‐mass spectrometry (GC‐MS). Six samples of palm oil and palm oil‐based fats were analyzed by GPC and GC‐MS. In chromatograms of all samples, significant peaks, retention time and mass spectra in conformity with self‐synthesized glycidyl palmitate and glycidyl oleate were detectable. Quantification of individual glycidyl esters was not possible because of a lack of pure standards. Concentration of ester‐bound glycidol in different samples of fats and oils was estimated using an indirect difference method. Glycidyl esters could be detected only in refined, but not in crude or native, fats and oils. The highest concentrations were detected in palm oil and palm oil‐based fats. In a palm oil sample, glycidyl ester concentration varied according to different deodorization parameters, temperature, and time, while 3‐MCPD ester concentration was relatively constant, indicating that mitigation of glycidyl esters possibly may be achieved by optimizing refining parameters.  相似文献   

7.
Because of the potential health risks, fatty acid esters of 3‐chloro‐1,2‐propanediol (3‐MCPD‐Es), 2‐chloro‐1,3‐propanediol (2‐MCPD‐Es) and glycidol (Gly‐Es) in foods are drawing the attention of public health authorities. To assess applicability of the rapid indirect method developed earlier by using a Candida rugosa lipase for the analyses of refined fats and oils was applied to the analyses of various foods. Mayonnaise, vegetable oil margarine and fat spread could be analyzed with the hydrolysis condition of 30 min at room temperature. Analyses of 3‐MCPD‐Es in margarines and fat spreads containing milk fat could be analyzed by increasing the hydrolysis temperature to 40 °C. The results in a mayonnaise, four fat spreads and five margarines analyzed by the enzymatic method were 0.10–0.98 mg/kg for 3‐MCPD, 0.05–0.41 mg/kg for 2‐MCPD and 0.15–0.59 mg/kg for Gly, and correlated well with the results obtained by AOCS Cd 29a with Cd 30–15 with slopes of 0.99–1.13, and R2s of 0.87–0.99. Further, by adding a simple fat extraction step using a solvent mix at 60 °C, foods high in protein and carbohydrate, such as infant formulas, could also be successfully analyzed with >90 % recovery in 1 day. Because the enzymatic method requires only 30 min for hydrolysis, the method is considered suitable for routine analyses of 2‐/3‐MCPD‐Es and Gly‐Es in foods.  相似文献   

8.
By Deutsche Gesellschaft für Fettwissenschaft (DGF) standard methods C‐III 18 for the determination of 3‐monochloropropane‐1,2‐diol (3‐MCPD), the minimum limit of detection was lower in the case of actual oil samples compared to the calibration samples. The problem was found to be lied in the low recovery of 3‐MCPD derivatives from the aqueous phase to the organic phase at the extraction step of the standard procedure. The substitution of the conventional solvent, n‐hexane, with n‐butanol, chloroform, and ethyl acetate increased the recovery to the relative extent of 5.6, 4.7, and 3.9, respectively. The modification contributed to improve the accuracy of the method, especially at lower concentration (<1 ppm) of 3‐MCPD. Practical applications: This paper provides the modification of DGF standard methods C‐III 18 in order to improve the accuracy to quantify 3‐MCPD at lower concentration. It might be important for estimation and control of our daily intake of 3‐MCPD, and for the product control in the fat and oil processing.  相似文献   

9.
On international scale the Codex Alimentarius Standard for Named Vegetable Oils differentiates between virgin oils and cold‐pressed oils, while in Germany virgin, non‐refined and refined oils are available. Here cold‐pressed is an additional quality feature. The paper explains and comments the various definitions for vegetable oils other than olive oil obtained by mechanical extraction only, because they are partly contradictory. Resulting from gentle processing virgin oils are often appreciated by the consumers as the better oils. The answer of the present paper to the question which type of oil is better is that there is no better or worse oil, but only a better or worse suitability of an oil for application in food processing or the kitchen. Finally, the paper picks up the upcoming debate on the potential ’?new' contaminant, 3‐MCPD‐fatty acid esters, which were found in refined oils.  相似文献   

10.
The effect of the frying temperature, frying duration and the addition of NaCl on the formation of 3‐monochloropropane‐1,2‐diol (3‐MCPD) esters and glycidyl esters (GE) in palm olein after deep frying was examined in this study. The eight frying systems were deep‐fat frying (at 160 and 180 °C) of chicken breast meat (CBM) (with 0, 1, 3 and 5% sodium chloride, NaCl) for 100 min/day for five consecutive days. All oil samples collected after each day were analyzed for 3‐MCPD ester, GE, and free fatty acid (FFA) contents, specific extinctions at 232 and 268 nm (K232 and K268), p‐anisidine value (pA), and fatty acid composition. There was a significant (p < 0.05) decrease in the 3‐MCPD esters and a significant (p < 0.05) decrease in the GE with the increasing of the frying duration. There were significant (p < 0.05) increases in the 3‐MCPD esters formed when the concentration of NaCl increased from 0 to 5%. The addition of NaCl to the CBM during deep frying had no significant effect on the GE generation. The FFA contents, K232 and K268 and pA showed that all the frying oils were within the safety limit.  相似文献   

11.
A novel carbon solid acid catalyst was prepared by incomplete hydrothermal carbonization of β‐cyclodextrin into small polycyclic aromatic carbon sheets, followed by the introduction of –SO3H groups via sulfonation with sulfuric acid. The physical and chemical properties of the catalyst were characterized in detail. The catalyst simultaneously catalyzed esterification and transesterification reactions to produce biodiesel from high free fatty acid (FFA) containing oils (55.2 %). For the as‐prepared catalyst, 90.82 % of the oleic acid was esterified after 8 h, while the total transesterification yield of high FFA containing oils reached 79.98 % after 12 h. By contrast, the obtained catalyst showed comparable activity to biomass (such as sugar, starch, etc.)‐based carbon solid acid catalyst while Amberlyst‐15 resulted in significantly lower levels of conversion, demonstrating its relatively high catalytic activity for simultaneous esterification and transesterification. Moreover, as the catalyst can be regenerated, it has the potential for use in biodiesel production from oils with a high FFA content.  相似文献   

12.
The availability of a reliable methodology for the quantification of fatty acid esters of monochloropropropanediol (MCPD) and glycidol is essential for understanding the mechanism of formation of these process contaminants and for developing effective mitigation strategies. While several analytical methods for the determination of MCPD esters have already been developed and evaluated, only very few procedures are currently available for the analysis of glycidyl esters. This work presents a new indirect method for the simultaneous quantification of fatty acid esters of 2-MCPD, 3-MCPD and glycidol. The method is based on the acid-catalyzed conversion of glycidyl esters into 3-monobromopropanediol (3-MBPD) monoesters which, owing to the structural similarity to MCPD esters, are quantified by using the procedure we previously optimized for the analysis of MCPD esters. The critical step of the method, which is the conversion of glycidyl esters, was optimized by testing different reagent concentrations and varying other condition settings. The novel method showed good repeatability (RSD <2.5 %) and between-day reproducibility (RSD ≤5 %). The limit of detection was 0.04 mg/kg for bound 2-MCPD and 3-MCPD and 0.06 mg/kg for bound glycidol. The trueness of the method was evaluated by the analysis of spiked samples and by interlaboratory comparison.  相似文献   

13.
A two‐step process and a direct alkaline transesterification process in preparation for cogeneration α‐tocopherol and biodiesel (fatty acid methyl esters, FAME) from cottonseeds were studied in this article. The effects of some factors on recovery of α‐tocopherol and conversion of cottonseed oil (triacylglycerols, TAGs) to biodiesel in the two processes were systematically studied by single factor experiments and orthogonal design method. In the two‐step process, α‐tocopherol and biodiesel were produced from extraction with two‐phase solvent followed by base‐catalysed transesterification. Approximately 95.5% TAGs was converted into biodiesel, and 1.008 mg/g (wet basis) α‐tocopherol was detected on the condition: 1:3 petroleum ether/methanol volume rate, 40°C extraction temperature; 7:1 methanol/cottonseed oil molar ratio, 1.1% KOH (w/v) concentration in methanol and 60°C esterification temperature. And in the direct alkaline transesterification reaction, 98.3% conversion of TAGs and 0.986 mg/g content of α‐tocopherol could be achieved at 60°C in 2 h. Both of the two processes were feasible from the economic point of view for further utilisation of cottonseed. © 2011 Canadian Society for Chemical Engineering  相似文献   

14.
Some “official methods” for preparing methyl esters of the fatty acids from oils or fats may be referred to by users as the boron trifluoride (BF3) method and invariably have two stages. The first stage, brief treatment with alkali [commonly NaOH in methanol (MeOH), sometimes NaOCH3] and heat has been popularly described as a saponification step for over 30 yr. In fact, the disappearance of visible fat or oil is mostly transesterification, which can be accomplished in a few minutes under mild conditions. Free fatty acids (FFA) originally present, or produced by saponification, are not converted to methyl esters at this stage. The second stage, heating in BF3-MeOH, has in practice been as short as 2 min. It can convert all FFA to methyl esters, but this step requires at least 30 min. Examples from the recent literature illustrate the necessity of extending the time for BF3-MeOH transesterification of lipids or oils and methylation of FFA. No alkali transesterification is needed. Presented in part at the 88th Annual Meeting of the American Oil Chemists’ Society, Seattle, WA, May 1997.  相似文献   

15.
A method for the preparation of 11α‐hydroxy derivatives of lithocholic and chenodeoxycholic acids, recently discovered to be natural bile acids, is described. The principal reactions involved were (1) elimination of the 12α‐mesyloxy group of the methyl esters of 3α‐acetate‐12α‐mesylate and 3α,7α‐diacetate‐12α‐mesylate derivatives of deoxycholic acid and cholic acid with potassium acetate/hexamethylphosphoramide; (2) simultaneous reduction/hydrolysis of the resulting △11‐3α‐acetoxy and △11‐3α,7α‐diacetoxy methyl esters with lithium aluminum hydride; (3) stereoselective 11α‐hydroxylation of the △11‐3α,24‐diol and △11‐3α,7α,24‐triol intermediates with B2H6/tetrahydrofuran (THF); and (4) selective oxidation at C‐24 of the resulting 3α,11α,24‐triol and 3α,7α,11α,24‐tetrol to the corresponding C‐24 carboxylic acids with NaClO2 catalyzed by 2,2,6,6‐tetramethylpiperidine 1‐oxyl free radical (TEMPO) and NaClO. In summary, 3α,11α‐dihydroxy‐5β‐cholan‐24‐oic acid and 3α,7α,11α‐trihydroxy‐5β‐cholan‐24‐oic acid have been synthesized and their nuclear magnetic resonance (NMR) spectra characterized. These compounds are now available as reference standards to be used in biliary bile acid analysis.  相似文献   

16.
In present communication, waste frying oil (WFO) has been used as a feedstock for biodiesel synthesis. WFO, procured from a local Indian restaurant possessed an acid value of 0.84 mg KOH/g, which is low enough for single step transesterification reaction. Biodiesel (fatty acid methyl esters) was washed after transesterification reaction and the yield got lowered substantially (from 96% to 86.36%) after water washing owing to loss of esters. 30:100 vol% (methanol to oil), 0.6 wt% NaOCH3, 60°C temperature and 600 rpm agitation in 1 h reaction time was found to be optimum for transesterification reaction. 1H NMR spectrum showed a high conversion (95.19%) of fatty acids in WFO to biodiesel in 2 h reaction time. Almost complete conversion (99.68%) was attained in 2 h reaction time. © 2011 Canadian Society for Chemical Engineering  相似文献   

17.
A lipase preparation developed from Candida sp. 99‐125 was used for fatty acid alkyl ester synthesis by both enzymatic esterification of fatty acids, and transesterification of oils and fats. The lipase preparation was chosen based on screening of lipases from commercial sources as well as those produced in the laboratory. The effects of enzyme dosage, solvent types, water absorbent additions, inhibition of short‐chain alcohols, alcohol and acid types, molar ratio of substrates, and reusability of the lipase preparation in esterification were studied. Degree of esterification between oleic acid and methanol under optimal conditions reached 92%. Purity of the methyl ester after washing with water and distillation was 98%. Half‐life of the lipase preparation was calculated to be approximately 340 h. For transesterification of rapeseed oil with the same lipase preparation, the amount of methanol and mode of methanol addition to the reaction were also conducted. Transesterification of the oil with stepwise methanol addition reached 83% after 36 h reaction time.  相似文献   

18.
SiO2‐supported V‐P‐O catalysts prepared by the incipient‐wetness impregnation method beginning with ammonium metavanadate and phosphoric acid were used in the catalytic reaction between methanol and acetic acid in an oxygen atmosphere. The SiO2‐supported V‐P‐O catalysts were composed of VOPO4 and (VO)2P2O7 phases. Both the acidic and alkaline sites were co‐present in the catalysts. The vanadium species catalyzed the oxidation of methanol to formaldehyde. The V‐P‐O(20–30 wt%)/SiO2 catalysts with a P/V mole ratio of 2:1 exhibited higher catalytic activity for the formation of acrylic acid and methyl acrylate with a total selectivity of ~28 % at 380 °C. The acid sites of the catalysts also catalyzed the formation of methyl acetate with a selectivity of ~65 %. Methanol can be an alternative to formaldehyde for the synthesis of both acrylic acid and methyl acrylate through the aldol condensation reaction.  相似文献   

19.
BACKGROUND: The influence of technological parameters on the epoxidation of 1‐butene‐3‐ol (1B3O) over titanium silicalite TS‐2 catalyst has been investigated. Epoxidations were carried out using 30%(w/w) hydrogen peroxide at atmospheric pressure. The major product from the epoxidation of B3O was 1,2‐epoxybutane‐3‐ol, with many potential applications. RESULTS: The influence of temperature (20–60 °C), 1B3O/H2O2 molar ratio (1:1–5:1), methanol concentration (5–90%(w/w)), TS‐2 catalyst concentration (0.1–6.0%(w/w)) and reaction time (0.5–5.0 h) have been studied. CONCLUSION: The epoxidation process is most effective if conducted at a temperature of 20 °C, 1B3O/H2O2 molar ratio 1:1, methanol concentration (used as the solvent) 80%(w/w), catalyst concentration 5%(w/w) and reaction time 5 h. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Fatty acid alkyl esters were produced from various vegetable oils by transesterification with different alcohols using immobilized lipases. Using n‐hexane as organic solvent, all immobilized lipases tested were found to be active during methanolysis. Highest conversion (97%) was observed with Thermomyces lanuginosa lipase after 24 h. In contrast, this lipase was almost inactive in a solvent‐free reaction medium using methanol or 2‐propanol as alcohol substrates. This could be overcome by a three‐step addition of methanol, which works efficiently for a range of vegetable oils (e.g. cottonseed, peanut, sunflower, palm olein, coconut and palm kernel) using immobilized lipases from Pseudomonas fluorescens (AK lipase) and Rhizomucor miehei (RM lipase). Repeated batch reactions showed that Rhizomucor miehei lipase was very stable over 120 h. AK and RM lipases also showed acceptable conversion levels for cottonseed oil with ethanol, 1‐propanol, 1‐butanol and isobutanol (50‐65% conversion after 24 h) in solvent‐free conditions. Methyl and isopropyl fatty acid esters obtained by enzymatic alcoholysis of natural vegetable oils can find application in biodiesel fuels and cosmetics industry, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号