首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of new high‐order filters capable of providing all filter functions without changing the circuit topology is proposed for integrated circuit applications. The proposed filters are based on simple active elements, namely, digitally controlled current amplifiers (DCCAs) and unity gain voltage buffers (VBs). Gains of DCCAs are digitally programmed to adjust the coefficients of transfer functions. R2R ladders are also utilized to increase the tuning flexibility of the proposed filters. A filter replicating the famous KHN biquad is extended to realize general nth‐order filters. Comparison with the recent works shows that the proposed approach results in more efficient realizations compared with its counterparts based on other current‐mode active elements. Experimental results obtained from a fourth‐order filter implemented using devices fabricated in a 0.35‐µm CMOS process are provided. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper a new circuit topology for realizing second‐order current‐mode quadrature oscillator is proposed. Three additional circuits are further derived from it, thus resulting in four distinct circuits. Each circuit employs three differential voltage current conveyors and all grounded passive components, ideal for IC implementation. All the circuits possess high output impedance. The circuits exhibit non‐interactive frequency control and low THD. The effects of non‐idealities are also analyzed. PSPICE simulations using 0.5 µCMOS parameters confirm the validity and practical utility of the proposed circuits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, two new circuit configurations for realizing voltage‐mode (VM) all‐pass sections (APSs) are presented. The proposed circuits employ only two differential voltage current conveyors (DVCCs) and are cascadable with other VM circuits due to their high‐input and low‐output impedances. The first configuration uses a grounded resistor and a grounded capacitor without requiring matching constraints, whereas the second employs two grounded resistors and a grounded capacitor with a single matching condition. While the first configuration can realize only one all‐pass response, the second can provide inverting and non‐inverting all‐pass responses with selection of appropriate input port. Adding two grounded resistors to the proposed filters, variable gain APSs can also be obtained. As applications, two quadrature oscillators, each of which using one of the proposed all‐pass circuits, one grounded resistor and one grounded capacitor are presented. SPICE simulation results are included to verify the theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an analytic approach for the estimation of the phase and amplitude error in series coupled LC quadrature oscillator (SC‐QO) is proposed. The analysis results show that imbalances in source voltage of coupling transistor because of mismatches between LC tanks are the main source of the phase and amplitude error in this oscillator. For compensation of the phase and amplitude error, a phase and amplitude‐tunable series coupled quadrature oscillator is designed in this paper. A phase shift generation circuit, designed using an added coupling transistor, can control the coupling transistor source voltage. The phase and amplitude error can simply be controlled and removed by tuning the phase shifter, while this correction does not have undesirable impact on phase noise. In fact, the proposed SC‐QO generates a phase shift in the output current, which reduces the resonator phase shift (RPS) and improves phase noise. The phase and amplitude tunable SC‐QO is able to correct the phase error up to ±12°, while amplitude imbalances are reduced as well. To evaluate the proposed analysis, a 4.5‐GHz CMOS SC‐QO is simulated using the practical 0.18‐μm TSMC CMOS technology with a current consumption of 2 mA at 1.8‐V supply voltage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We propose a theoretical analysis of the class of quadrature VCOs (QVCOs) based on two LC‐oscillators directly coupled by means of the second harmonic. The analysis provides the conditions for the existence and stability of steady‐state quadrature oscillations and a simplified model for the phase noise (PN) transfer function with respect to a noise source in parallel to the tank. We show that the figure of merit defined as the product between PN and current equals that of the single VCO, confirming that quadrature generation is achieved by this class of QVCO without degrading that figure of merit. An analytical model for the phase quadrature error due to tank mismatches is also proposed. The validity of all analytical models is discussed against numerical simulations. A practical implementation at 3.26 GHz with ±20% tuning range in a 0.13µm CMOS technology is also presented, confirming the main theoretical findings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a new model for the frequency of oscillation, the oscillation amplitude and the phase‐noise of ring oscillators consisting of MOS‐current‐mode‐logic delay cells. The numerical model has been validated through circuit simulations of oscillators designed with a typical 130 nm CMOS technology. A design flow based on the proposed model and on circuit simulations is presented and applied to cells with active loads. The choice of the cell parameters that minimize phase‐noise and power consumption is addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A novel fully differential digitally programmable current conveyor (DPCCII) is presented in this paper. The programmability of the proposed DPCCII is achieved using three‐bit MOS R‐2R ladder current division network. The DPCCII is used to realize a field programmable analog array (FPAA). The FPAA consists of seven configurable analog blocks arranged in a hexagonal form. The FPAA power consumption is 72.3 mW from 1 V voltage supply. A second‐order programmable universal filter is realized using the proposed FPAA as an application. All the circuits are realized and simulated using 90 nm IBM CMOS technology model under balanced supply voltage of ±0.5 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A continuous‐time (CT) ΣΔ modulator for sensing and direct analog‐to‐digital conversion of nA‐range (subthreshold) currents is presented in this work. The presented modulator uses a subthreshold technique based on subthreshold source‐coupled logic cells to efficiently convert subthreshold current to digital code without performing current‐to‐voltage conversion. As a benefit of this technique, the current‐sensing CT ΣΔ modulator operates at low voltage and consumes very low power, which makes it convenient for low‐power and low‐voltage current‐mode sensor interfaces. The prototype design is implemented in a 0.18 µm standard complementary metal‐oxide semiconductor technology. The modulator operates with a supply voltage of 0.8 V and consumes 5.43 μW of power at the maximum bandwidth of 20 kHz. The obtainable current‐sensing resolution ranges from effective number of bits (ENOB) = 7.1 bits at a 5 kHz bandwidth to ENOB = 6.5 bits at a 20 kHz bandwidth (ENOB). The obtained power efficiency (peak FoM = 1.5 pJ/conv) outperforms existing current‐mode analog‐to‐digital converter designs and is comparable with the voltage‐mode CT ΣΔ modulators. The modulator generates very low levels of switching noise thanks to CT operation and subthreshold current‐mode circuits that draw a constant subthreshold current from the voltage supply. The presented modulator is used as a readout interface for sensors with current‐mode output in ultra low‐power conditions and is also suitable to perform on‐chip current measurements in power management circuits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
New CMOS current differential amplifiers are proposed suitable for analogue signal processing at high frequencies. They consist of simple current mirrors, which are easy to design and to implement in IC form. Low‐voltage low‐power design is feasible. Relying on these devices a number of applications are obtained, including lossy and lossless integrators, simulated inductors, active filters, and harmonic oscillators. Theoretical expressions are given for all of the proposed new circuits. The verification of the circuits is also achieved by simulation. Copyright 2001 © John Wiley & Sons, Ltd.  相似文献   

10.
Modern RF front‐ends require wide tuning‐range oscillators with quadrature outputs. In this paper we present a two‐integrator quadrature oscillator, which covers the whole bandwidth of UWB applications. A circuit prototype in a 130 nm CMOS technology is continuously tuneable from 3.1 to 10.6 GHz. The circuit die area is less than 0.013mm2, leading to a figure‐of‐merit FOMA of ?176.7dBc/Hz at the upper frequency. The supply voltage is 1.2 V, and the power consumption is 7 mW at the lower frequency and 13 mW at the upper frequency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A new integrated, low‐noise, low‐power, and area‐efficient multichannel receiver for magnetic resonance imaging (MRI) is described. The proposed receiver presents an alternative technique to overcome the use of multiple receiver front‐ends in parallel MRI. The receiver consists of three main stages: low‐noise pre‐amplifier, quadrature down‐converter, and a band pass filter (BPF). These components are used to receive the nuclear magnetic resonance signals from a 3 × 3 array of micro coils. These signals are combined using frequency domain multiplexing (FDM) method in the pre‐amplifier and BPF stages, then amplified and filtered to remove any out‐of‐band noise before providing it to an analog‐to‐digital converter at the low intermediate frequency stage. The receiver is designed using a 90 nm CMOS technology to operate at the main B0 magnetic field of 9.4 T, which corresponds to 400 MHz. The receiver has an input referred noise voltage of 1.1 nV/√Hz, a total voltage gain of 87 dB, a power consumption of 69 mA from a 1 V supply voltage, and an area of 305 µm × 530 µm including the reference current and bias voltage circuits. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents different alternatives for the implementation of low‐power monolithic oscillators for wireless body area networks and describes the design of two quadrature generators operating in the 2.4‐GHz frequency range. Both implementations have been designed in a 90‐nm Complementary Metal‐Oxide Semiconductor (CMOS) technology and operate at 1 V of supply voltage. The first architecture uses a voltage‐controlled oscillator (VCO) running at twice the desired output frequency followed by a divider‐by‐2 circuit. It experimentally consumes 335 μW and achieves a phase noise of ?110.2 dBc/Hz at 1 MHz. The second architecture is a quadrature VCO that uses reinforced concrete phase shifters in the coupling path for phase noise improvement. Its power consumption is only 210 μW, and it obtains a phase noise of ?111.9 dBc/Hz at 1 MHz. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes six new first‐order voltage‐mode all‐pass sections (VM‐APSs) based on three general topologies. Each circuit uses two differential voltage current conveyors and three grounded passive components. All the circuits possess high input impedance and easy control of pole frequency either by a simple matching of resistors (two equal‐valued resistors) for the three canonical circuits or by a single resistor for three non‐canonical circuits. PSPICE simulation results using real device 0.5µ CMOS parameters are given to validate the proposed circuits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This article presents a low quiescent current output‐capacitorless quasi‐digital complementary metal‐oxide‐semiconductor (CMOS) low‐dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations due to the load transient to different load current steps to find the suitable current boundary for segmentation. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Furthermore, this situation is the worst case for stability requirements of the LDO. Therefore, using one smaller transistor for low load currents and another one larger for higher currents, a proper trade‐off between output variations, complexity, and power dissipation is achieved. The proposed LDO regulator has been designed and post‐simulated in HSPICE in a 0.18 µm CMOS process to supply a stable load current between 0 and 100 mA with a 40 pF on‐chip output capacitor, while consuming 4.8 μA quiescent current. The dropout voltage of the LDO is set to 200 mV for 1.8 V input voltage. The results reveal an improvement of approximately 53% and 25% on the output voltage variations and settling time, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a novel approach to study the phase error in source injection coupled quadrature oscillators (QOs). Like other LC QOs, the mismatches between LC tanks are the main source of phase error in this oscillator. The QO is analyzed where the phase error and oscillation frequency are derived in terms of circuit parameters. The proposed analysis shows that the output phase error is a function of injection current and the current of source equivalent capacitor. As a result, it is shown that increasing of tail current and LC tank quality factor decreases the phase error. Derived equations show that the phase error can be cancelled and even controlled by adjusting bias currents. To evaluate the proposed analysis and consequent designed QO, a 5.5 GHz CMOS QO is designed and simulated using the practical 0.18 µm TSMC CMOS technology. The experiments show good agreement between analytical equations and simulation results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
For multi‐Gb/s/pin parallel dynamic random access memory (DRAM) interface, a crosstalk cancelling voltage‐mode driver is proposed. The voltage‐mode driver is composed of a main driver and sub‐drivers where the cancellation signal is generated by the sub‐drivers. The outputs of the main driver and sub‐drivers are combined by a capacitive coupling so the direct current (DC) output swing is not affected by the crosstalk cancellation and the sub‐drivers may not consume DC power. The proposed crosstalk cancelling voltage‐mode driver implemented in a 0.11‐µm complementary metal‐oxide semiconductor (CMOS) technology improves the horizontal eye openings by 22.6 ps at 4‐Gbps/pin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Three new grounded capacitor current mode low‐pass filters using two inverting second‐generation current conveyor (ICCII) or one double output ICCII are given. The circuits employ the minimum number of passive circuit components, namely two resistors and two capacitors. The circuits are generated from three new voltage mode low‐pass filters realized with the ICCII. A new grounded capacitor CCII+ current mode low‐pass filter is generated from one of the new voltage mode low‐pass filters employing two ICCII?. A new grounded passive component low‐pass filter with independent control on Q and using three ICCII+ is also introduced. Spice simulation results based on using the 0.5 µm CMOS model are included to support the theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In high‐gain fully differential operational amplifier (FD op‐amp) design, the output common‐mode (CM) voltage of the FD op‐amp is quite sensitive to device properties and mismatch. It is, therefore, necessary to add an additional control circuit, referred to as the common‐mode feedback (CMFB) circuit, to stabilize the output CM voltage at some specified voltage. In this paper, we present a high linear CMOS continuous‐time CMFB circuit based on two differential pairs and the source degeneration using MOS transistors. Theoretical analysis and SPICE simulation results are provided to validate our proposed ideas. Finally, we present two design applications of the proposed configuration, one is the FD folded‐cascode op‐amp and the other is the Multiply‐by‐Two circuit which is the key component in the popular 1.5 bit/stage pipelined analog‐to‐digital converter. Comparison with conventional topologies shows that the new configuration has attractive characteristics concerning their implementation in high linear analog integrated circuits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a 40 M–1000 MHz 77.2‐dB spurious free dynamic range (SFDR) CMOS RF variable gain amplifier (VGA) has been presented for digital TV tuner applications. The proposed RFVGA adopts a wideband operational‐amplifier‐based VGA and a wideband buffer with differential multiple gated transistor linearization method for wideband operation and high linearity. The SFDR of the proposed RFVGA is also analyzed in detail. Fabricated in a 0.13‐µm CMOS process, the RFVGA provides 31‐dB gain range with 1‐dB gain step, a minimum noise figure of 7.5 dB at a maximum gain of 27 dB, and maximum in‐band output‐referred third‐order intercept point of 27.7 dBm, while drawing an average current of 27.8 mA with a supply voltage of 3.3 V. The chip core area is 0.54 mm × 0.4 mm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号