首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The drop resistance and fracture behavior of Sn–37Pb, Sn–3.0Ag–0.5Cu (SAC305), Sn–1.0Ag–0.5Cu (SAC105), and Sn–8.5Zn–0.5Ag–0.01Al–0.1 Ga (SnZn-5e) solder ball joints under the board-level drop test (BLDT) and the ball impact test (BIT) were studied. The results show that the drop reliabilities in terms of the characteristic life ratio from the Weibul plot are SnZn-5e : Sn–37Pb:SAC105:SAC305 = 3.1:2.9:2.1:1. It was observed that failure of Sn–37Pb occurred at the eutectic tin–lead phase whereas it took place at the brittle interface between the (Cu,Ni)6Sn5 inter-metallic compound and Ni layer in SAC305. The failure of SAC105 was found to be located within the solder matrix as well as at the interface of the inter-metallic compound. The failure of SnZn-5e depends on the morphology of the interfacial inter-metallic compound. The failure modes of Sn–37Pb and SAC305 after the BIT were similar to those after the BLDT. The maximum impact force (Fmax) and the initial fracture energy (E) from the BIT can be used to evaluate the drop reliability of solder joints.  相似文献   

2.
In this study, the new Fe/Bi-bearing Sn-1Ag-0.5Cu (SAC105) solder alloys were studied for their mechanical properties, including impact toughness, hardness and shear strength. Charpy impact tester with impact speed of 5.4 m/s was used to determine the impact absorbed energy during impact tests. With the 0.05 wt.% Fe and 1 wt.% Bi addition to the SAC105 alloy, the impact absorbed energy increased from 8.1 J to 9.7 J by about 20% and literally no further improvement was observed by increasing the Bi content in the alloy. Vickers hardness tests were performed with a load of 245.2 mN and load dwell time of 10 s. The addition of Fe/Bi to SAC105 increased the hardness of the alloy from 10.5 HV to 22.6 HV showing an increase of more than two fold. Shear tests were performed with a shear speed of 0.25 mm/min. Shear strength almost doubled for the Fe/Bi added SAC105, as compared to the base alloy, increasing from 17.8 MPa to 34.3 MPa. The microstructure study shows that Bi is dissolved in the solder bulk and strengthens the solder alloys by its solid solution strengthening mechanism. The β-Sn grain size, as revealed by cross-polarized optical microscopy, significantly reduced from 60–100 μm to 20–40 μm with Fe/Bi addition to SAC105. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via ImageJ software indicated that Fe/Bi addition to SAC105 significantly reduced the Ag3Sn and Cu6Sn5 IMCs size and refined the microstructure. These changes in the microstructure of Fe/Bi added SAC105 expectedly resulted in such improvement in their mechanical properties.  相似文献   

3.
Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.  相似文献   

4.
《Microelectronics Reliability》2014,54(11):2523-2535
Thermal cycling tests have been performed for a range of electronic components intended for avionic applications, assembled with SAC305, SN100C and SnPbAg solder alloys. Two temperature profiles have been used, the first ranging between −20 °C and +80 °C (TC1), and the second between −55 °C and +125 °C (TC2). High level of detail is provided for the solder alloy composition and the component package dimensions, and statistical analysis, partially supported by FE modeling, is reported. The test results confirm the feasibility of SAC305 as a replacement for SnPbAg under relatively benign thermomechanical loads. Furthermore, the test results serve as a starting point for estimation of damage accumulation in a critical solder joint in field conditions, with increased accuracy by avoiding data reduction. A computationally efficient method that was earlier introduced by the authors and tested on relatively mild temperature environments has been significantly improved to become applicable on extended temperature range, and it has been applied to a PBGA256 component with SAC305 solder in TC1 conditions. The method, which utilizes interpolated response surfaces generated by finite element modeling, extends the range of techniques that can be employed in the design phase to predict thermal fatigue of solder joints under field temperature conditions.  相似文献   

5.
In this work, we present ball impact test (BIT) responses and fracture modes obtained at an impact velocity of 0.8 m/s on SAC (Sn–Ag–Cu) package-level solder joints with a trace amount of Mn or RE (rare earth) additions, which were bonded with substrates of OSP Cu and electroplated Ni/Au surface finishes respectively. With respect to the as-mounted conditions, the Ni/Au joints possessed better impact fracture resistance than those with Cu substrate. Subsequent to aging at 150 °C for 800 h, multi-layered intermetallic compounds emerged at the interface of the Ni/Au joints and gave rise to degradation of the BIT properties. This can be prevented by RE doping, which is able to inhibit the growth of interfacial IMCs during aging. As for aged Cu joints, the Mn-doped samples showed the best performance in impact force and toughness. This was related to the hardened Sn matrix, and most importantly, a greater Cu3Sn/Cu6Sn5 thickness ratio at the interface. Compared to Cu6Sn5, Cu3Sn with a similar hardness but greater elastic modulus possessed better plastic ability, which was beneficial to the reliability of solder joints suffering high strain rate deformation if no excess Kirkendall voids formed.  相似文献   

6.
This study investigated the mechanical and electrical properties of Ag–2Pd wire after thermal annealing. The thermal stability of the tested wire was examined by separately imposing static annealing at 275 °C, 325 °C and 375 °C in a vacuum environment. It was found that annealing the Ag–2Pd wire at 275 °C promoted the formation of a fully annealed structure with equiaxed grains. Annealing Ag–2Pd wire had a shorter heat affect zone (HAZ) length than those of conventional wire, and offered outstanding mechanical properties. A long-term electrical test found Ag3(Pd)Al and Ag2(Pd)Al compounds between the Ag–Pd ball and Al pad. These results confirmed the high-reliability properties of annealed Ag–2Pd wires for the wire bonding process.  相似文献   

7.
Sn-Ag-Cu lead-free solders are regarded as a potential substitute for Pb-Sn solder alloys. In the current study, the non-reacting, non-coarsening ZnO nano-particles (ZnO NPs) were successfully incorporated into Sn–3.0Ag–0.5Cu (SAC305) lead-free solder by mechanical mixing of ZnO powders and melting at 900 °C for 2 h. Tensile creep testing was performed for plain SAC305 solder and SAC305-0.7 wt% ZnO NPs composite solders and a Garofalo hyperbolic sine power-law relationship was created from the experimental data to predict the creep mechanism as a function of tensile stress and temperature. Based on the tensile creep results, the creep resistance of SAC305 solder alloy was improved considerably with ZnO NPs addition, although the creep lifetime was increased. From microstructure observation, reinforcing ZnO NPs into SAC305 solder substantially suppressed the enlargement of Ag3Sn and Cu6Sn5 intermetallic compound (IMC) particles and decreased the spacing of the inter-particles between them, reduced the grain size of β-Sn and increased the eutectic area in the alloy matrix. The modification of microstructure, which leaded to a strong adsorption effect and high surface-free energy of ZnO NPs, could result in hindering the dislocation slipping, and thus provides standard dispersion strengthening mechanism. Moreover, the average activation energy (Q) for SAC305 and SAC305-0.7ZnO alloys were 50.5 and 53.1 kJ/mol, respectively, close to that of pipe diffusion mechanism in matrix Sn.  相似文献   

8.
A robust solder joint in crystalline silicon solar cell assembly is necessary to ensure its thermo-mechanical reliability. The solder joint formed using optimal parameter setting accumulates minimal creep strain energy density which leads to longer fatigue life. In this study, thermo-mechanical reliability of solder joint in crystalline silicon solar cell assembly is evaluated using finite element modelling (FEM) and Taguchi method. Geometric models of the crystalline silicon solar cell assembly are built and subjected to accelerated thermal cycling utilizing IEC 61215 standard for photovoltaic panels. In order to obtain the model with minimum accumulated creep strain energy density, the L9 (33) orthogonal array was applied to Taguchi design of experiments (DOE) to investigate the effects of IMC thickness (IMCT), solder joint width (SJW) and solder joint thickness (SJT) on the thermo-mechanical reliability of solder joints. The solder material used in this study is Sn3.8Ag0.7Cu and its non-linear creep deformation is simulated using Garofalo-Arrhenius creep model. The results obtained indicate that solder joint thickness has the most significant effect on the thermo-mechanical reliability of solder joints. Analysis of results selected towards thermo-mechanical reliability improvement shows the design with optimal parameter setting to be: solder joint thickness — 20 μm, solder joint width — 1000 μm, and IMC thickness — 2.5 μm. Furthermore, the optimized model has the least damage in the solder joint and shows a reduction of 47.96% in accumulated creep strain energy density per cycle compared to the worst case original model. Moreover, the optimized model has 16,264 cycles to failure compared with the expected 13,688 cycles to failure of a PV module designed to last for 25 years.  相似文献   

9.
Gold-gold (AuAu) diffusion bonding behavior of different tri-layer thicknesses of Electroless Ni/Electroless Pd/Immersion Au (ENEPIG) plating on a high-density system on a flex (SOF) package was examined. Plating thickness has a significant effect on surface roughness and void formation at the AuAu bonding interface, which exhibits degraded bond strength with an affected failure mode. It is seen that relatively smooth surface roughness (Ra < 100 nm) of thicker Ni(P) plating samples facilitates the shrinkage of voids and significantly increases bonding strength. Higher surface roughness in the low Ni(P) sample has a poor surface profile, which results in large lenticular shape voids and requires more energy to shrink by diffusion and a creep process. Enhancing bonding parameters constitutes an essential feature to compensate the physical and mechanical properties of ENEPIG plating. Based on this study, the authors recommend a suitable ENEPIG plating thickness for a high quality metallurgical bond, which passes different reliability tests.  相似文献   

10.
《Microelectronics Reliability》2014,54(6-7):1235-1242
The primary aim of this investigation was to understand the effect of temperature fluctuations on a number of various solder materials namely SAC105, SAC305, SAC405 and Sn–36Pb–2Ag. To achieve this objective, three different classic joint assemblies (a ball joint, a test specimen joint and finger lead joint) were modeled which provided the foundation for the creep and fatigue behaviors simulation. Anand’s viscoplasticity as a constitutive equation was employed to characterize the behavior of solders numerically under the influence of thermal power cycles (80–150 °C) and thermal shock cycles (−40 to 125 °C). To extend the research outcome for industrial use, two additional research activities were carried out. One of them was to obtain lifetime-predictions of solder joints based on Coffin Manson concept. The other one focused on parameterization to obtain the ideal solder thickness under the consideration of plastic strain and economic benefit.  相似文献   

11.
Due to increasing demand for higher performance, greater flexibility, smaller size, and lighter weight in electronic devices, extensive studies on flexible electronic packages have been carried out. However, there has been little research on flexible packages by wafer level package (WLP) technology using anisotropic conductive films (ACFs) and flex substrates, an innovative packaging technology that requires fewer process steps and lower process temperature, and also provides flexible packages. This study demonstrated and evaluated the reliability of flexible packages that consisted of a flexible Chip-on-Flex (COF) assembly and embedded Chip-in-Flex (CIF) packages by applying a WLP process.The WLP process was successfully performed for the cases of void-free ACF lamination on a 50 μm thin wafer, wafer dicing without ACF delamination, and a flip-chip assembly which showed stable bump contact resistances. The fabricated COF assembly was more flexible than the conventional COF whose chip thickness is about 700 μm. To evaluate the flexibility of the COF assembly, a static bending test was performed under different bending radiuses: 35 mm, 30 mm, 25 mm, and 20 mm. Adopting optimized bonding processes of COF assembly and Flex-on-Flex (FOF) assembly, CIF packages were then successfully fabricated. The reliability of the CIF packages was evaluated via a high temperature/humidity test (85 °C/85% RH) and high temperature storage test (HTST). From the reliability test results, the CIF packages showed excellent 85 °C/85% RH reliability. Furthermore, guideline of ACF material property was suggested by Finite Element Analysis (FEA) for better HTST reliability.  相似文献   

12.
Various fine pitch chip-on-film (COF) packages assembled by (1) anisotropic conductive film (ACF), (2) nonconductive film (NCF), and (3) AuSn metallurgical bonding methods using fine pitch flexible printed circuits (FPCs) with two-metal layers were investigated in terms of electrical characteristics, flip chip joint properties, peel adhesion strength, heat dissipation capability, and reliability. Two-metal layer FPCs and display driver IC (DDI) chips with 35 μm, 25 μm, and 20 μm pitch were prepared. All the COF packages using two-metal layer FPCs assembled by three bonding methods showed stable flip chip joint shapes, stable bump contact resistances below 5 mΩ, good adhesion strength of more than 600 gf/cm, and enhanced heat dissipation capability compared to a conventional COF package using one-metal layer FPCs. A high temperature/humidity test (85 °C/85% RH, 1000 h) and thermal cycling test (T/C test, ?40 °C to + 125 °C, 1000 cycles) were conducted to verify the reliability of the various COF packages using two-metal layer FPCs. All the COF packages showed excellent high temperature/humidity and T/C reliability, however, electrically shorted joints were observed during reliability tests only at the ACF joints with 20 μm pitch. Therefore, for less than 20 μm pitch COF packages, NCF adhesive bonding and AuSn metallurgical bonding methods are recommended, while all the ACF and NCF adhesives bonding and AuSn metallurgical bonding methods can be applied for over 25 μm pitch COF applications. Furthermore, we were also able to demonstrate double-side COF using two-metal layer FPCs.  相似文献   

13.
We developed a reliable and low cost chip-on-flex (COF) bonding technique using Sn-based bumps and a non-conductive adhesive (NCA). Two types of bump materials were used for the bonding process: Sn bumps and Sn–Ag bumps. The bonding process was performed at 180 °C for 10 s using a thermo-compression bonder after dispensing the NCA. Sn-based bumps were easily deformed to contact Cu pads during the bonding process. A thin layer of Cu6Sn5 intermetallic compound was observed at the interface between Sn-based bumps and Cu pads. After bonding, electrical measurements showed that all COF joints had very low contact resistance, and there were no failed joints. To evaluate the reliability of COF joints, high temperature storage tests (150 °C, 1000 h), thermal cycling tests (−25 °C/+125 °C, 1000 cycles) and temperature and humidity tests (85 °C/85% RH, 1000 h) were performed. Although contact resistance was slightly increased after the reliability test, all COF joints passed failure criteria. Therefore, the metallurgical bond resulted in good contact and improved the reliability of the joints.  相似文献   

14.
The thermal management of high-power light-emitting-diode (LED) devices employing various die-attach materials is analyzed. Three types of die-attach materials are tested, including silver paste, Sn–3 wt.% Ag–0.5 wt.% Cu (SAC305) solder, and SAC305 solder added with a small amount of carbon nanotubes (CNTs). The analysis of thermal management is performed by comparing the temperatures of the LED chips in use and the total thermal resistances of the LED devices obtained respectively from the thermal infrared images and thermal transient analysis. Due to the high thermal conductivity of CNT, the addition of CNTs into the SAC305 solder reduces the total thermal resistance and chip temperature of the LED device, and the thermal management of the LED devices is improved accordingly.  相似文献   

15.
Brittle solder joints in Electroless Ni electroless Pd immersion Au (ENEPIG) surface finishes are one of the key reliability issues in electronics assembly. Previous characterization of the reflow process has indicated that interfacial voids formed after solder reflow are responsible for the decreases in solder joint strength. However, the mechanisms behind the formation of these voids in the ENEPIG process remain unclear. In this paper, the interaction between various aspects of the ENEPIG process and solder joint strength were investigated. Surface roughness, morphology, and nano-pitting at the interface between electroless Pd and Ni-P were characterized. The size and density of nano voids inside Ni2SnP were measured after the specimens were reflowed with Sn4Ag0·5Cu solder ball. Additionally, high speed shear solder joint strength measurements were made. The results indicated that anion adhesion induced nano-pitting at the interface between the Ni2SnP intermetallic and Pd, resulting in the formation of a nano void layer during reflow. These interfacial voids lead to lower solder joint strength. Based on the results, a solution to prevent the brittle solder joint failures is suggested.  相似文献   

16.
The mechanical stability of solder joints with Pd added to Sn-Ag-Cu alloy with different aging conditions was investigated in a high-G level shock environment. A test vehicle with three different strain and shock level conditions in one board was used to identify the joint stability and failure modes. The results revealed that Pd provided stability at the package-side interface with an overall shock performance improvement of over 65% compared with the Sn-Ag-Cu alloy without Pd. A dependency on the pad structure was also identified. However, the strengthening mechanism was only observed in the non-solder mask defined (NSMD) pad design, whereas the solder mask defined (SMD) pad design boards showed no improvement in shock performance with Pd-added solders. The effects of Sn grain orientation on shock performance, interconnect stability, and crack propagation path with and without Pd are discussed. The SAC305 + Pd solder joints showed more grain refinements, recrystallization, and especially mechanical twin deformation during the shock test, which provides a partial explanation for the ability of SAC305 + Pd to absorb more shock-induced energy through active deformation compared with SAC305.  相似文献   

17.
Sn-3.0Ag-0.5Cu board-level lead-free solder joint drop (1000g, 1 ms)/vibration (15g, 25–35 Hz) reliability after thermal (− 40–125 °C, 1000 cycle)/isothermal (150 °C, 500 h) cycling was reported in this study. The failure performance of solder joint and testing life were analyzed under design six testing conditions (1. Single drop impact, 2. Order thermal cycling and drop impact, 3. Order isothermal cycling and drop impact, 4. Single vibration 5. Order thermal cycling and vibration 6. Order isothermal cycling and vibration). The results revealed that the pre-cracks initiation during thermal cycling do not affect the solder joint drop impact reliability, but decrease the vibration reliability. The formation of voids weaken both drop and vibration reliability of solder joint. After thermal cycling, the crack initiated from β-Sn near IMC layer, and continued propagation through the same path when under second in order vibration impact. But propagation path turn to IMC layer when under second in order drop impact. The drop life increases from 41 times to 49 times, and vibration life decrease from 77 min to 45 min. After isothermal cycling, the formation of voids let the cracks occurred at IMC layer under second in order no matter drop impact or vibration. The drop and vibration life is 19 times and 62 min respectively.  相似文献   

18.
The eutectic Au80Sn20 solder alloy has been applied in semiconductor assemblies and other industries for years. Due to some superior physical properties, Au/Sn alloy gradually becomes one of the best materials for soldering in electronic devices and components packaging but the voids growth in AuSn solder joints is one of the many critical factors governing the solder joint reliability. Voids may degrade the mechanical robustness of the die attach and consequently affect the reliability and thermal conducting performance of the assembly. Severe thermal cycles [− 55 °C/+175 °C] have highlighted degradations in AuSn die attach solder. The inspection of as-prepared die-attachments by X-ray and SEM (observation of cross-section) shows that the initial voids sizes were increased and a propagation of transverse cracks inside the joint between voids has appeared after ageing, it was featured also the existence of the IMC typical scallop-shape morphology with the phase structure of (Ni, Au)3Sn2 on as-reflowed joints. In this paper, we evaluate the origin of these degradations and ways to address them.  相似文献   

19.
Solder joint integrity has long been recognized as a key issue affecting the reliability of integrated circuit packages. In this study, both experimental and finite element simulation methods were used to characterize the mechanical performance and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints with different standoff heights (h, varying from 500 to 100 μm) and constant pad diameter (d, d = 480 μm) and contact angle under shear loading. With decreasing h (or the ratio of h/d), results show that the stiffness of BGA solder joints clearly increases with decreasing coefficient of stress state and torque. The stress triaxiality reflects the mechanical constraint effect on the mechanical strength of the solder joints and it is dependent on the loading mode and increases dramatically with decreasing h under tensile loading, while the change of h has very limited influence on the stress triaxiality under shear loading. Moreover, when h is decreased, the concentration of stress and plastic strain energy along the interface of solder and pad decreases, and the fracture location of BGA solder joints changes from near the interface to the middle of the solder. Both geometry and microstructure greatly affect the shear behavior of joints, the average shear strength shows a parabolic trend with decreasing standoff height. Furthermore, the brittle fracture of BGA solder joints after long-time isothermal aging was investigated. Results obtained show that, under the same shear force, the stress intensity factors, KI and KII, and the strain energy release rate, GI, at the Sn–3.0Ag–0.5Cu/Cu6Sn5 interface and in the Cu6Sn5 layer obviously decrease with decreasing h, hence brittle fracture is more prone to occur in the joint with a large standoff height.  相似文献   

20.
Industry migration to leadfree solders has resulted in a proliferation of a wide variety of solder alloy compositions. The most popular amongst these are the Sn–Ag–Cu family of alloys like SAC105 and SAC305. Electronics subjected to shock and vibration may experience strain rates of 1–100/s. Electronic product may often be exposed to high temperature during storage, operation and handling in addition to high strain rate transient dynamic loads during drop-impact, shock and vibration. Properties of leadfree solder alloys at high strain rates at low and high temperatures experienced by the solder joint during typical mechanical shock events are scarce. Previous studies have showed the effect of high strain rates and thermal aging on the mechanical properties of leadfree alloys including elastic modulus and the ultimate tensile strength. The ANAND viscoplastic constitutive model has been widely used to describe the inelastic deformation behavior of solders in electronic components. In this study, SAC105 and SAC305 leadfree alloys have been tested at strain rates of 10, 35, 50 and 75/s at various operating temperatures of 50 °C, 75 °C, 100 °C and 125 °C. Full-field strain in the specimen have been measured using high speed imaging at frame rates up to 75,000 fps in combination with digital image correlation. The cross-head velocity has been measured prior-to, during, and after deformation to ensure the constancy of cross-head velocity. Stress–strain curves have been plotted over a wide range of strain rates and temperatures. Experimental data for the pristine specimen has been fit to the ANAND's viscoplastic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号