首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of industry-supplied GaN high electron mobility transistors (HEMTs) subjected to accelerated life testing (ALT) is directly related to increases in concentrations of two defects with trap energies of EC-0.57 and EC-0.75 eV. Pulsed I-V measurements and constant drain current deep level transient spectroscopy were employed to evaluate the quantitative impact of each trap. The trap concentration increases were only observed in devices that showed a 1 dB drop in output power and not the result of the ALT itself indicating that these traps and primarily the EC-0.57 eV trap are responsible for the output power degradation. Increases from the EC-0.57 eV level were responsible for 80% of the increased knee walkout while the EC-0.75 eV contributed only 20%. These traps are located in the drain access region, likely in the GaN buffer, and cause increased knee walkout after the application of drain voltage.  相似文献   

2.
Identification and characterization of a single, deep trap causing large increases in the on-resistance of GaN-on-Si power metal-insulator-semiconductor-high electron mobility transistors (MISHEMTs) is reported. This is achieved by using HEMT-based deep level optical spectroscopy (DLOS) and related methods in conjunction with high voltage off-state VDS switching up to 400 V. A trap with an activation energy of ~ EC  2 eV that is physically located in the drain-access region of the MISHEMT is shown to be the primary source of an increase of the dynamic on-resistance increase by as much as ~ 9 times at 400 V operation. Comparisons of trap signatures extracted from the MISHEMT with capacitance-based DLOS measurements of simple Schottky-diode test-structures showing the same, dominant trap signature suggests that the physical defect is located within the GaN buffer and is not a surface or insulator-related defect. A buffer trap based model is presented to explain the observed on-resistance degradation effects in the MISHEMTs during high voltage switching.  相似文献   

3.
We make a two-dimensional transient analysis of field-plate AlGaN/GaN high electron mobility transistors (HEMTs) with a Fe-doped semi-insulating buffer layer, which is modeled that as deep levels, only a deep acceptor located above the midgap is included (EC  EDA = 0.5 eV, EC: energy level at the bottom of conduction band, EDA: deep acceptor's energy level). And the results are compared with a case having an undoped semi-insulating buffer layer in which a deep donor above the midgap (EC  EDD = 0.5 eV. EDD: the deep donor's energy level) is considered to compensate a deep acceptor below the midgap (EDA  EV = 0.6 eV, EV: energy level at the top of valence band). It is shown that the drain-current responses when the drain voltage is lowered abruptly are reproduced quite similarly between the two cases with different types of buffer layers, although the time region where the slow current transients occur is a little different. The lags and current collapse are reduced by introducing a field plate. This reduction in lags and current collapse occurs because the deep acceptor's electron trapping is reduced under the gate region in the buffer layer. The dependence of drain lag, gate lag and current collapse on the field-plate length and the SiN layer thickness is also studied, indicating that the rates of drain lag, gate lag and current collapse are quantitatively quite similar between the two cases with different types of buffer layers when the deep-acceptor densities are the same.  相似文献   

4.
Cut-off frequency increase from 12.1 GHz to 26.4 GHz, 52.1 GHz and 91.4 GHz is observed when the 1 μm gate length GaN HEMT is laterally scaled down to LG = 0.5 μm, LG = 0.25 μm and LG = 0.125 μm, respectively. The study is based on accurately calibrated transfer characteristics (ID-VGS) of the 1 μm gate length device using Silvaco TCAD. If the scaling is also performed horizontally, proportionally to the lateral (full scaling), the maximum drain current is reduced by 38.2% when the gate-to-channel separation scales from 33 nm to 8.25 nm. Degradation of the RF performance of a GaN HEMT due to the electric field induced acceptor traps experienced under a high electrical stress is found to be about 8% for 1 μm gate length device. The degradation of scaled HEMTs reduces to 3.5% and 7.3% for the 0.25 μm and 0.125 gate length devices, respectively. The traps at energy level of ET = EV + 0.9 eV (carbon) with concentrations of NIT = 5 × 1016cm 3, NIT = 5 × 1017cm 3 and NIT = 5 × 1018cm 3 are located in the drain access region where highest electrical field is expected. The effect of traps on the cut-off frequency is reduced for devices with shorter gate lengths down to 0.125 μm.  相似文献   

5.
《Solid-state electronics》2006,50(9-10):1515-1521
Al0.26Ga0.74N/AlN/GaN high-electron-mobility transistor (HEMT) structures with AlN interfacial layers of various thicknesses were grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy, and their structural and electrical properties were characterized. A sample with an optimum AlN layer thickness of 1.0 nm showed a highly enhanced Hall mobility (μHall) of 1770 cm2/Vs with a low sheet resistance (ρs) of 365 Ω/sq. (2DEG density ns = 1.0 × 1013/cm2) at room temperature compared with those of a sample without the AlN interfacial layer (μHall = 1287 cm2/Vs, ρs = 539 Ω/sq., and ns = 0.9 × 1013/cm2). Electron transport properties in AlGaN/AlN/GaN structures were theoretically studied, and the calculated results indicated that the insertion of an AlN layer into the AlGaN/GaN heterointerface can significantly enhance the 2DEG mobility due to the reduction of alloy disorder scattering. HEMTs were successfully fabricated and characterized. It was confirmed that AlGaN/AlN/GaN HEMTs with the optimum AlN layer thickness show superior DC properties compared with conventional AlGaN/GaN HEMTs.  相似文献   

6.
We examined the effects of post-annealing in forming-gas ambient on the spin-on-dielectric (SOD)-buffered passivation as well as the conventional plasma-enhanced chemical vapor deposition (PECVD) Si3N4 passivation structure in association with the quantitative analysis of defects at the passivation interfaces of AlGaN/GaN high electron mobility transistors (HEMTs). Before the annealing, the interface state densities (Dit) of the PECVD Si3N4 are one-order higher (1012–1013 cm−2 eV−1) than those of the SOD SiOx (1011–1012 cm−2 eV−1) as derived from CV characterization. Clear reduction in Dit from the PECVD Si3N4 is extracted to a level of 1011–1012 cm−2 eV−1 with a stronger absorption from Si–N peak in Fourier transform infrared spectroscopy spectra after the post-annealing. On the other hand, negligible difference in Dit value is obtained from the SOD SiOx. In this paper we propose that much lower measurement levels (~156 mA/mm) before the annealing and substantial recovery (~13% increase) after the annealing in maximum drain current density of the AlGaN/GaN HEMTs with Si3N4 passivations are due to the original higher density before the annealing and greater reduction in Dit of the PECVD Si3N4 after the annealing. Significant reduction after the annealing in gate–drain leakage current (from ~10−3 to ~10−5 A, 100-μm gate width) of the HEMTs with the Si3N4 passivation is also supposed to be attributed to the reduction of Dit.  相似文献   

7.
The DC and microwave characteristics of Lg = 50 nm T-gate InAlN/AlN/GaN High Electron Mobility Transistor (HEMT) on SiC substrate with heavily doped n+ GaN source and drain regions have demonstrated using Synopsys TCAD tool. The proposed device features an AlN spacer layer, AlGaN back-barrier and SiN surface passivation. The proposed HEMT exhibits a maximum drain current density of 1.8 A/mm, peak transconductance (gm) of 650 mS/mm and ft/fmax of 118/210 GHz. At room temperature, the measured carrier mobility, sheet charge carrier density (ns) and breakdown voltage are 1195 cm2/Vs, 1.6 × 1013 cm−2 and 18 V respectively. The superlatives of the proposed HEMTs are bewitching competitor for future monolithic microwave integrated circuits (MMIC) applications particularly in W-band (75–110 GHz) high power RF applications.  相似文献   

8.
We report on a novel approach for designing high-frequency AlGaN/GaN HEMTs based on gate-drain field engineering. This approach uses a drain-connected field controlling electrode (FCE). The devices with gate-to-FCE separation of 0.5–0.7 μm exhibit much smaller frequency behavior degradation with drain bias at least up to 30 V and yield RF gain and output power improvement up to ~2 times compared to conventional devices. These results show that the FCE is a powerful technique of improving the high-frequency, high power performance of GaN HEMTs at high drain biases.  相似文献   

9.
Reliability of AlGaN/GaN HEMTs processed with different surface oxidation levels was studied using electrical and optical methods. It was found that HEMTs with more surface oxide content are more susceptible to degradation in terms of gate leakage and trapping characteristics, although this oxide layer initially passivates surface traps. In the degraded devices, trap level with activation energy of 0.45–0.47 eV was observed and attributed to surface related traps. This indicates that oxygen may play a crucial role for AlGaN/GaN HEMT reliability.  相似文献   

10.
The performance degradation of commercial foundry level GaN HEMTs placed under a constant-power drain voltage step-stress test has been studied. By utilizing electroluminescence measurement techniques to optimize hot electron stress testing conditions (Meneghini, 2012), no significant permanent changes in saturation current (Idss), transconductance (Gm), and threshold voltage (Vth) can be seen after stress testing of drain voltages from 30 V up to 200 V. We observe little permanent degradation due to hot electron effects in GaN HEMTs at these extreme operating conditions and it is inferred that other considerations, such as key dimensions in channel or peak electric field (Chynoweth, 1958; Zhang and Singh, 2001) [2,3], are more relevant to physics of failure than drain bias alone.  相似文献   

11.
Commercial bipolar junction transistor (2N 2219A, npn) irradiated with 150 MeV Cu11+-ions with fluence of the order 1012 ions cm?2, is studied for radiation induced gain degradation and deep level defects. IV measurements are made to study the gain degradation as a function of ion fluence. The properties such as activation energy, trap concentration and capture cross-section of deep levels are studied by deep level transient spectroscopy (DLTS). Minority carrier trap levels with energies ranging from EC ? 0.164 eV to EC ? 0.695 eV are observed in the base–collector junction of the transistor. Majority carrier trap levels are also observed with energies ranging from EV + 0.203 eV to EV + 0.526 eV. The irradiated transistor is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 350 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for transistor gain degradation.  相似文献   

12.
In this work, current collapse effects in AlGaN/GaN HEMTs are investigated by means of measurements and two-dimensional physical simulations. According to pulsed measurements, the used devices exhibit a significant gate-lag and a less pronounced drain-lag ascribed to the presence of surface/barrier and buffer traps, respectively. As a matter of fact, two trap levels (0.45 eV and 0.78 eV) were extracted by trapping analysis based on isothermal current transient. On the other hand, 2D physical simulations suggest that the kink effect can be explained by electron trapping into barrier traps and a consequent electron emission after a certain electric-field is reached.  相似文献   

13.
《Microelectronics Reliability》2014,54(6-7):1282-1287
This study investigates the characteristics of AlGaN/GaN MIS–HEMTs with HfxZr1xO2 (x = 0.66, 0.47, and 0.15) high-k films as gate dielectrics. Sputtered HfxZr1xO2 with a dielectric constant of 20–30 and a bandgap of 5.2–5.71 eV was produced. By increasing the Zr content of HfZrO2, the VTH shifted from −1.8 V to −1.1 V. The highest Hf content at this study reduced the gate leakage by approximately one order of magnitude below that of those Zr-dominated HFETs. The maximum IDS currents were 474 mA/mm, 542 mA/mm, and 330 mA/mm for Hf content of 66%, 47%, 15% at VGS = 3 V, respectively.  相似文献   

14.
The effect of gate metallization and gate shape on the reliability and RF performance of 100 nm AlGaN/GaN HEMTs on SiC substrate for mm-wave applications has been investigated under on-state DC-stress tests. By replacing the gate metallization from NiPtAu to PtAu the median time to failure at Tch = 209 °C can be improved from 10 h to more than 1000 h. Replacing the PtAu T-gate by a spacer gate further reduces the degradation rate under on-state stress, but decreases the current-gain cut-off frequency from 75 GHz to 50 GHz. Physical failure analysis using electroluminescence and TEM cross-section revealed pit and Ni void formation at the gate foot as the main degradation mechanisms of devices with NiPtAu T-gate. High resolution EDX mapping of stressed devices indicates that the formation of pits is caused by a local aluminium oxidation process. Simulation of the stress induced changes of the input characteristics of devices with NiPtAu gate further proves the formation of pits and Ni voids.  相似文献   

15.
Gallium arsenide diodes with and without indium arsenide quantum dots were electron irradiated to investigate radiation induced defects. Baseline and quantum dot gallium arsenide pn-junction diodes were characterized by capacitance–voltage measurements, and deep level transient spectroscopy. Carrier accumulation was observed in the gallium arsenide quantum dot sample at the designed depth for the quantum dots via capacitance–voltage measurements. Prior to irradiation, a defect 0.84 eV below the conduction band (EC – 0.84 eV) was observed in the baseline sample which is consistent with the native EL2 defect seen in gallium arsenide. After 1 MeV electron irradiation three new defects were observed in the baseline sample, labeled as E3 (EC – 0.25 eV), E4 (EC – 0.55 eV), and E5 (EC – 0.76 eV), consistent with literature reports of electron irradiated gallium arsenide. Prior to irradiation, the addition of quantum dots appeared to have introduced defect levels at EC – 0.21, EC – 0.38, and EC – 0.75 eV denoted as QD–DX1, QD–DX2, and QD–EL2 respectively. In the quantum dot sample after 1 MeV electron irradiation, QD–E3 (EC – 0.28 eV), QD–E4 (EC – 0.49 eV), and QD–EL2 (EC – 0.72 eV) defects, similar to the baseline sample, were observed, although the trap density was dissimilar to that of the baseline sample. The quantum dot sample showed a higher density of the QD–E4 defect and a lower density of QD–E3, while the QD–EL2 defect seemed to be unaffected by electron irradiation. These findings suggest that the quantum dot sample may be more radiation tolerant to the E3 defect as compared to the baseline sample.  相似文献   

16.
In this paper, a study of the channel modulation instability of commercial p-GaN gate HEMTs is presented. During the gate-voltage stress test, substantial RDS(ON) variations up to 78 mΩ (93.8%) were observed. It is found that the p-GaN/AlGaN/GaN gate structure enables the injection of holes and electrons, which can be captured by the donor/acceptor-like traps located in the AlGaN layer. Therefore, the trapped holes and electrons concurrently modulate the channel conductivity, resulting in RDS(ON) variations. Device simulation was performed to help explain the mechanism from the perspective of energy band. In addition, results reveal that with the recommended working gate-voltage stress VGS = 7 V, the on-state resistance, the threshold voltage and the off-state drain to source leakage current vary up to 8 mΩ (16.3%), 0.2 V (14.8%) and 12.8 μA (42.66%) within 1 h, respectively, which could raise reliability issues for the power electronics applications of p-GaN gate HEMTs.  相似文献   

17.
This study focusses on the investigation of RF power variations (100–300 W) effects on structural, morphological and optical properties of CaCu3Ti4O12 thin film deposited on ITO/glass substrate in a non-reactive atmosphere (Ar). The increase of RF power from 100 W to 300 W led to evolution of (112), (022), (033), and (224) of CCTO XRD peaks. The results indicated that all the films were polycrystalline nature with cubic structure. The crystallite size increased from 20 nm to 25 nm with increasing RF power. FESEM revealed that the films deposited were uniform, porous with granular form, while the grain size increased from 30 to 50 nm. AFM analysis confirmed the increment in surface roughness from 1.6 to 2.3 nm with increasing film grain size. Besides, optical transmittance values decreased to minimum 70% with increasing RF power while optical energy bandgap increased from 3.20 eV to 3.44 eV. Therefore, favorable CCTO thin film properties can be possibly obtained for certain application by controlling RF magnetron sputtering power.  相似文献   

18.
We report on preparation and electrical characterization of InAlN/AlN/GaN metal–oxide–semiconductor high electron mobility transistors (MOS HEMTs) with Al2O3 gate insulation and surface passivation. About 12 nm thin high-κ dielectric film was deposited by MOCVD. Before and after the dielectric deposition, the samples were treated by different processing steps. We monitored and analyzed the steps by sequential device testing. It was found that both intentional (ex situ) and unintentional (in situ before Al2O3 growth) InAlN surface oxidation increases the channel sheet resistance and causes a current collapse. Post deposition annealing decreases the sheet resistance of the MOS HEMT devices and effectively suppresses the current collapse. Transistors dimensions were source-to-drain distance 8 μm and gate width 2 μm. A maximum transconductance of 110 mS/mm, a drain current of ~0.6 A/mm (VGS = 1 V) and a gate leakage current reduction from 4 to 6 orders of magnitude compared to Schottky barrier (SB) HEMTs was achieved for MOS HEMT with 1 h annealing at 700 °C in forming gas ambient. Moreover, InAlN/GaN MOS HEMTs with deposited Al2O3 dielectric film were found highly thermally stable by resisting 5 h 700 °C annealing.  相似文献   

19.
There are huge differences in dynamic on-resistance Ron, also known as current-collapse, between current GaN power HEMT technologies. Here we illustrate this fact with dynamic Ron measurements on two commercially available devices from 2 different manufacturers, with one showing more than a factor of 2 increase in dynamic Ron after OFF-state drain bias (type 1) and the other one < 15% change. HTRB stress for 1000 h and 3000 h on type 1 and type 2 respectively was found to only make subtle changes to dynamic Ron, with type 1 still showing a much larger dynamic Ron than type 2. A model for dynamic Ron is presented based on a floating, highly resistive, epitaxial buffer whose potential is determined by parasitic leakage paths. The difficulty in controlling local leakage paths can explain the problems that manufacturers are still finding in suppressing dynamic Ron.  相似文献   

20.
This study demonstrated AlGaN/GaN Schottky barrier diodes (SBDs) for use in high-frequency, high-power, and high-temperature electronics applications. Four structures with various Fe doping concentrations in the buffer layers were investigated to suppress the leakage current and improve the breakdown voltage. The fabricated SBD with an Fe-doped AlGaN buffer layer of 8 × 1017 cm 3 realized the highest on-resistance (RON) and turn-on voltage (VON) because of the memory effect of Fe diffusion. The optimal device was the SBD with an Fe-doped buffer layer of 7 × 1017 cm 3, which exhibited a RON of 31.6 mΩ-cm2, a VON of 1.2 V, a breakdown voltage of 803 V, and a buffer breakdown voltage of 758 V. Additionally, the low-frequency noise decreased when the Fe doping concentration in the buffer layer was increased. This was because the electron density in the channel exhibited the same trend as that of the Fe doping concentration in the buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号