首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In memory technology, size reduction induces consequences in terms of reliability, including an increase in the line resistances and a voltage drop along the line during memory operation. This problem can occur in Flash products during sector erase mode, and in resistive RAM (ReRAM) during forming, reset or word-reading modes.In this paper we apply a simple resistive model to determine the wordline (or bitline) length of a Flash memory (and thus to optimize the Flash memory array's size) or the word length of a ReRAM, according to specific reliability criteria: the threshold voltage drop of cells along a line in a Flash memory sector, or the resistance variation of the cells in a ReRAM word.For the technologies considered in this paper, on the one hand we demonstrate a maximal threshold voltage drop of 2 V for a 4 Gbit Flash array and we provide design recommendations, and on the other hand we demonstrate that a maximal word length of 32 bits for ReRAM can be achievable in a ReRAM matrix. The presented methodology can easily be extended to any memory technology.  相似文献   

2.
Potential application of amorphous silicon nitride (a-Si3N4)/silicon oxy-nitride (SiON) film has been demonstrated as resistive non-volatile memory (NVM) device by studying the Al/Si3N4/SiON/p-Si metal–insulator–semiconductor (MIS) structure. The existence of several deep trap states was revealed by the photoluminescence characterizations. The bipolar resistive switching operation of this device was investigated by current–voltage measurements whereas the trap charge effect was studied in detail by hysteresis behavior of frequency dependent capacitance–voltage characteristics. A memory window of 4.6 V was found with the interface trap density being 6.4 × 1011 cm−2 eV−1. Excellent charge retention characteristics have been observed for the said MIS structure enabling it to be used as a reliable non-volatile resistive memory device.  相似文献   

3.
The present work is devoted to the preparation of zinc oxide (ZnO): tin oxide (SnO2) thin films by ultrasonic spray technique. A set of films are deposited using a solution formed with zinc acetate and tin chloride salts mixture with varied weight ratio R=[Sn/(Zn+Sn)]. The ratio R is varied from 0 to 100% in order to investigate the influence of Sn concentration on the physical properties of ZnO:SnO2 films. The X rays diffraction (XRD) analysis indicated that films are composed of ZnO and SnO2 distinct phases without any alloys or spinnel phase formations. The average grain size of crystallites varies with the ratio R from 17 to 20 nm for SnO2 and from 24 to 40 nm for ZnO. The obtained films are highly transparent with a transmission coefficient equal to 80%. An increase in Sn concentration increases both the effective band gap energy from 3.2 to 4.01 eV and the photoluminescence intensity peak assigned defects to SnO2. The films electrical characterization indicated that films are resistive. Their resistivities vary between 1.2×102 and 3.3×104  cm). The higher resistivity is measured in film deposited with a ratio R equal to 50%.  相似文献   

4.
《Organic Electronics》2008,9(6):1087-1092
Poly(vinylidene fluoride-trifluoroethylene) (70–30 mol%) was used as the functional dielectric layer in organic ferroelectric field effect transistors (FeFET) for non-volatile memory applications. Thin P(VDF-TrFE) film samples spin-coated on metallized plastic substrates were stretch-annealed to attain a topographically flat-grain structure and greatly reduce the surface roughness and current leakage of semi-crystalline copolymer film, while enhancing the preferred β-phase of the ferroelectric films. Resultant ferroelectric properties (PR = |10| μC/cm2, EC = |50| MV/m) for samples simultaneously stretched (50–70% strain) and heated below the Curie transition (70 oC) were comparable to those resulting from high temperature annealing (>140 oC). The observed enhancements by heating and stretching were studied by vibration spectroscopy and showed mutual complementary effects of both processes. Organic FeFET fabricated by thermal evaporating pentacene on the smooth P(VDF-TrFE) films showed substantial improvement of semiconductor grain growth and enhanced electrical characteristics with promising non-volatile memory functionality.  相似文献   

5.
The electrical properties, memory switching behavior, and microstructures of ZrTiO4 thin films prepared by sol–gel method at different annealing temperatures were investigated. All films exhibited ZrTiO4 (111) and (101) orientations perpendicular to the substrate surface, and the grain size increased with increasing annealing temperature. A low leakage current density of 1.47×10?6 A/cm2 was obtained for the prepared films. The IV characteristics of ZrTiO4 capacitors can be explained in terms of ohmic conduction in the low electric field region and Schottky emission in the high electric field region. An on/off ratio of 102 was measured in our glass/ITO/ZrTiO4/Pt structure with an annealing temperature of 600 °C. Considering the primary memory switching behavior of ZrTiO4, ReRAM based on ZrTiO4 shows promise for future nonvolatile memory applications.  相似文献   

6.
This study demonstrated AlGaN/GaN Schottky barrier diodes (SBDs) for use in high-frequency, high-power, and high-temperature electronics applications. Four structures with various Fe doping concentrations in the buffer layers were investigated to suppress the leakage current and improve the breakdown voltage. The fabricated SBD with an Fe-doped AlGaN buffer layer of 8 × 1017 cm 3 realized the highest on-resistance (RON) and turn-on voltage (VON) because of the memory effect of Fe diffusion. The optimal device was the SBD with an Fe-doped buffer layer of 7 × 1017 cm 3, which exhibited a RON of 31.6 mΩ-cm2, a VON of 1.2 V, a breakdown voltage of 803 V, and a buffer breakdown voltage of 758 V. Additionally, the low-frequency noise decreased when the Fe doping concentration in the buffer layer was increased. This was because the electron density in the channel exhibited the same trend as that of the Fe doping concentration in the buffer layer.  相似文献   

7.
《Organic Electronics》2014,15(6):1290-1298
This paper investigates the effects of side chains, which are important structural constituents, on the characteristics of organic resistive memory devices with water-soluble polyfluorene (WPF) derivatives. The WPF derivatives have either an ethylene oxide (EO) or an alkyl side chain the lengths of the EO side chains are 2, 4, or 6 molecules. WPFs exhibit typical bipolar switching behaviors with reliable non-volatile characteristics and good device-to-device uniformity under ambient conditions. WPFs with the EO side chains showed better memory characteristics than those of the alkyl side chains of similar length. In addition, as the EO unit lengthened, the ON/OFF ratio of the memory device gradually increased from 5 × 102 to 105, and the threshold voltage (Vth) progressively decreased from 4 to 3.5 V. The retention times for WPF-hexyl, WPF-2O, WPF-4O, and WPF-6O are 104, 200, 104, and 104 s, respectively. The excellent switching properties of WPF-4O and WPF-6O are believed to be mainly attributed to highly localized current pathways and the low trap density.  相似文献   

8.
We fabricated TiO2 thin films the by sol–gel process. Successful IV curves can be obtained in the Cu/TiO2/ATO structure device in which TiO2 thin film was calcined at 300 °C. The bipolar resistive switching behavior was observed and the ratio of Roff/Ron can be increased to 104. The switching voltage changes from 4.8 to 3.5 V when the current compliance drops from 10 to 0.1 mA. We also investigated the microstructure by HRTEM technology.  相似文献   

9.
《Organic Electronics》2014,15(9):2107-2115
To devise a reliable strategy to develop an ultraviolet (UV) sensitive hybrid photodetector, plasma process is utilized as a single step method for production of large area nanocomposite films based on plasma polymerized aniline–titanium dioxide (PPani–TiO2). The synthesis of PPani–TiO2 nanocomposite films are made using reactive magnetron sputtering in combination with plasma polymerization. The deposited PPani–TiO2 nanocomposite films are characterized and discussed in terms of structural, optical and electrochemical properties. A hybrid flexible nanostructured UV photodetector is constructed from PPani–TiO2 nanocomposite and its optoelectronic properties are evaluated which exhibits a greatly enhanced photosensitivity resulting in high photoconductive gain (G = 4.56 × 104) and high responsivity (R = 9.36 × 103 AW−1) under UV illumination of 254 nm. The flexible devices are successfully operated under bending up to 170° (bending radius, R = 8 mm) and showed a good folding strength and stability. The proposed plasma based method provides a green technology where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions.  相似文献   

10.
In this study, polymer solar cells (PSCs) doped with Au nanoparticles (Au NPs) were successfully fabricated to maximize the photon-harvesting properties on the photoactive layer. In addition, a conductivity-enhanced hybrid buffer layer was introduced to improve the photon absorption properties and effectively separate the generated charges by adding Au NPs and dimethylsulfoxide (DMSO) to the PH 500 as a buffer layer. The PSC performance was optimized with a 88% improvement over the conventional PSCs (photoactive area: 225 mm2, power conversion efficiency (PCE): 3.2%) by the introduction to the buffer layer of Au NPs and DMSO at 10 wt% and 1.0 wt%, respectively, and with 15 wt% Au NP doping in the photoactive layer. The internal resistance was decreased due to the increased photocurrent caused by the localized surface plasmon resonance (LSPR) effect of the Au NPs in the photoactive layer and by the improvement of carrier mobility induced by the DMSO doping of the buffer layer. As a result, the series resistance (RS) deceased from 42.3 to 19.7 Ω cm2 while the shunt resistance (RSH) increased from 339 to 487 Ω cm2.  相似文献   

11.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

12.
Triblock copolymer surfactant, HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H (i.e. P123)-based nanocrystalline (nc)-TiO2 thin film had been synthesized on organic flexible polyimide (PI) sheet for their application in organic metal–insulator–semiconductor (MIS) device. The nc-TiO2 film over PI was successfully deposited for the first time by a systematic solution proceeds dip-coating method and by the assistance of triblock copolymer surfactant. The effect of annealing temperature (270 °C, 5 h) on the texture, morphology and time-induced hydrophilicity was studied by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle system, respectively, to examine the chemical composition of the film and the contact angle. The surface morphology of the semiconducting layer of organic pentacene was also investigated by using AFM and XRD, and confirmed that continuous crystalline film growth had occurred on the nc-TiO2 surface over flexible PI sheet. The semiconductor–dielectric interface of pentacene and nc-TiO2 films was characterized by current–voltage and capacitance–voltage measurements. This interface measurement in cross-link MIS structured device yielded a low leakage current density of 8.7 × 10?12 A cm?2 at 0 to ?5 V, maximum capacitance of 102.3 pF at 1 MHz and estimated dielectric constant value of 28.8. Furthermore, assessment of quality study of nc-TiO2 film in real-life flexibility tests for different types of bending settings with high durability (c.a. 30 days) demonstrated a better comprehension of dielectric properties over flexible PI sheet. We expected them to have a keen interest in the scientific study, which could be an alternate opportunity to the excellent dielectric–semiconductor interface at economic and low temperature processing for large-area flexible field-effect transistors and sensors.  相似文献   

13.
Fluorine-doped tin oxide (FTO) films were prepared by an improved sol-gel process, in which FTO films were deposited on glass substrates using evaporation method, with the precursors prepared by the conventional sol-gel method. The coating and sintering processes were combined in the evaporation method, with the advantage of reduced probability of films cracking and simplified preparation process. The effects of F-doping contents and structure of films on properties of films were analyzed. The results showed the performance index (ΦTC=3.535×10−3 Ω−1 cm) of the film was maximum with surface resistance (Rsh) of 14.7 Ω cm−1, average transmittance (T) of 74.4% when F/Sn=14 mol%, the reaction temperature of the sol was 50 °C, and the evaporation temperature was 600 °C in muffle furnace, and the film has densification pyramid morphology and SnO2−xFx polycrystalline structure with tetragonal rutile phase. Compared with the commercial FTO films (ΦTC=3.9×10−3 Ω−1 cm, Rsh=27.4 Ω cm−1, T=80%) produced by chemical vapor deposition (CVD) method, the ΦTC value of FTO films prepared by an improved sol-gel process is close to them, the electrical properties are higher, and the optical properties are lower.  相似文献   

14.
There are huge differences in dynamic on-resistance Ron, also known as current-collapse, between current GaN power HEMT technologies. Here we illustrate this fact with dynamic Ron measurements on two commercially available devices from 2 different manufacturers, with one showing more than a factor of 2 increase in dynamic Ron after OFF-state drain bias (type 1) and the other one < 15% change. HTRB stress for 1000 h and 3000 h on type 1 and type 2 respectively was found to only make subtle changes to dynamic Ron, with type 1 still showing a much larger dynamic Ron than type 2. A model for dynamic Ron is presented based on a floating, highly resistive, epitaxial buffer whose potential is determined by parasitic leakage paths. The difficulty in controlling local leakage paths can explain the problems that manufacturers are still finding in suppressing dynamic Ron.  相似文献   

15.
We have investigated the contact resistivity of GeCu2Te3 (GCT) phase change material to a W electrode using the circular transfer length method (CTLM). The contact resistivity ρc of as-deposited amorphous GCT to W was 3.9×10−2 Ω cm2. The value of ρc drastically decreased upon crystallization and crystalline GCT that annealed at 300 °C showed a ρc of 4.8×10−6 Ω cm2. The ρc contrast between amorphous (as-deposited) and crystalline (annealed at 300 °C) states was larger in GCT than in conventional Ge2Sb2Te5 (GST). Consequently, it was suggested from a calculation based on a simple vertical structure memory cell model that a GCT memory cell shows a four times larger resistance contrast than a GST memory cell.  相似文献   

16.
In order to investigate charge trap characteristics with various thicknesses of blocking and tunnel oxide for application to non-volatile memory devices, we fabricated 5 and 15 nm Al2O3/5 nm La2O3/5 nm Al2O3 and 15 nm Al2O3/5 nm La2O3/5, 7.5, and 10 nm Al2O3 multi-stack films, respectively. The optimized structure was 15 nm Al2O3 blocking oxide/5 nm La2O3 trap layer/5 nm Al2O3 tunnel oxide film. The maximum memory window of this film of about 1.12 V was observed at 11 V for 10 ms in program mode and at ?13 V for 100 ms in erase mode. At these program/erase conditions, the threshold voltage of the 15 nm Al2O3/5 nm La2O3/5 nm Al2O3 film did not change for up to about 104 cycles. Although the value of the memory window in this structure was not large, it is thought that a memory window of 1.12 V is acceptable in the flash memory devices due to a recently improved sense amplifier.  相似文献   

17.
《Solid-state electronics》2006,50(7-8):1238-1243
The dark current density–voltage characteristic of Au/ZnPc/Al device at room temperature has been investigated. Results showed a rectification behavior. At low forward bias, the current density was found to be ohmic, while at high voltages, space charge limited the current mechanism dominated by exponential trapping levels. Junction parameters such as rectification ratio (RR), series resistance (Rs), and shunt resistance (Rsh) were found to be 9.42, 9.72 MΩ, and 0.88 × 103 MΩ, respectively. The current density–voltage characteristics under white light illumination (100 W/m2) gives values of 0.55 V, 3 × 10−3 A/m2, 0.18 and 5.8 × 10−4% for the open circuit voltage, Voc, the short circuit current density (Jsc), the fill factor (FF), and conversion efficiency (η), respectively.  相似文献   

18.
The nonvolatile memory thin-film transistors (M-TFTs) using a solution-processed indium-zinc-titanium oxide (IZTiO) active channel and a poly(vinylidene fluoride-trifluoroethylene) ferroelectric gate insulator were fabricated and characterized to elucidate the relationships between the IZTiO channel composition and the memory performances such as program speed and data retention. The compositions of the spin-coated IZTiO layers were modified with different Ti amounts of 0, 2, 5, and 10 mol%. The carrier concentration of IZTiO channel layer was effectively modulated by the incorporated Ti amounts and the defect densities within the channel were effectively reduced by Ti incorporation. The M-TFT fabricated with IZTiO channel with 2-mol% Ti composition exhibited the best overall device performances, in which the μFE, SS, MW, and programmed Ion/off were obtained to be 23.6 cm2 V?1 s?1, 701 mV/decade, 11.8 V, and 1.2 × 105, respectively. Furthermore, thanks to the suitable amounts of Ti incorporation into the IZO, the improved program speed and data retention properties were successfully confirmed.  相似文献   

19.
《Solid-state electronics》2006,50(9-10):1515-1521
Al0.26Ga0.74N/AlN/GaN high-electron-mobility transistor (HEMT) structures with AlN interfacial layers of various thicknesses were grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy, and their structural and electrical properties were characterized. A sample with an optimum AlN layer thickness of 1.0 nm showed a highly enhanced Hall mobility (μHall) of 1770 cm2/Vs with a low sheet resistance (ρs) of 365 Ω/sq. (2DEG density ns = 1.0 × 1013/cm2) at room temperature compared with those of a sample without the AlN interfacial layer (μHall = 1287 cm2/Vs, ρs = 539 Ω/sq., and ns = 0.9 × 1013/cm2). Electron transport properties in AlGaN/AlN/GaN structures were theoretically studied, and the calculated results indicated that the insertion of an AlN layer into the AlGaN/GaN heterointerface can significantly enhance the 2DEG mobility due to the reduction of alloy disorder scattering. HEMTs were successfully fabricated and characterized. It was confirmed that AlGaN/AlN/GaN HEMTs with the optimum AlN layer thickness show superior DC properties compared with conventional AlGaN/GaN HEMTs.  相似文献   

20.
Poly (3-hexylthiophene-2, 5-diyl) (P3HT) and its blend with Phenyl-C61-Butyric acid-Methyl-Ester (PCBM) and fullerene (C60) thin films were prepared and their electrical properties for memory applications were studied. Due to doping, a sharp decrease in the resistance for a P3HT:PCBM:C60 device was observed at around 70 °C which makes it useful for thermal switching applications. Addition of C60 to P3HT:PCBM blend gave a high value for RRESET/RSET in thermal switching. For bias switching, threshold voltage reduces to 1.4 V from 25 V with the addition of C60 to P3HT layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号