首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the mechanical and electrical properties of Ag–2Pd wire after thermal annealing. The thermal stability of the tested wire was examined by separately imposing static annealing at 275 °C, 325 °C and 375 °C in a vacuum environment. It was found that annealing the Ag–2Pd wire at 275 °C promoted the formation of a fully annealed structure with equiaxed grains. Annealing Ag–2Pd wire had a shorter heat affect zone (HAZ) length than those of conventional wire, and offered outstanding mechanical properties. A long-term electrical test found Ag3(Pd)Al and Ag2(Pd)Al compounds between the Ag–Pd ball and Al pad. These results confirmed the high-reliability properties of annealed Ag–2Pd wires for the wire bonding process.  相似文献   

2.
Thin film of silver tin sulfides (Ag–Sn–S) has been deposited on indium tin oxide coated glass (ITO) substrates using potentiostatic cathodic electrodeposition technique. New procedure for the growth of Ag–Sn–S film is presented. An electrolyte solution containing Silver Nitrate (AgNO3), Tin(II) Chloride (SnCl2) and Sodium Thiosulfate (Na2S2O3)in acidic solution (pH ~2) and at temperature of the bath 55 °C were used for the growth of Ag–Sn–S thin film. Prior to the deposition, a cyclic voltammetry technique was performed in binary (Ag–S, Sn–S) and ternary (Ag–Sn–S) systems. This study was carried out to examine the behavior of electroactive species at the electrode surface. Based on these results, the cathodic applied potential was fixed at −1000 mV versus Ag/AgCl to obtain a uniform and good adhesion of ternary thin film. After that, structural, morphological and optical performances of films have been investigated. The X-ray diffraction patterns of the samples demonstrate the presence of the orthorhombic phase of Ag8SnS6 at applied potential of −1000 mV versus Ag/AgCl. Based on the scanning electron microscopy (SEM), it was found that the surface morphology and grain size were strongly influenced by the presence of Sn and/or Ag in the electrolyte bath. The band gaps of binaries and ternary compound are evaluated from optical absorption measurements. Band gap of Ag8SnS6 determined from transmittance spectra is in the range 1.56 eV. Flat-band potential and free carrier concentration have been determined from Mott–Schottky plot and are estimated to be around 0.18 V and 2.21×1014 cm−3 respectively. The photoelectrochemical test of Ag8SnS6 was studied and the experimental observations are discussed in detail.  相似文献   

3.
We have investigated Ag(200 nm)/AgAl(100 nm) ohmic contacts to p-type GaN for near-UV (405 nm) flip-chip light-emitting diodes (LEDs). It is shown that the use of an AgAl alloy capping layer (with 8 at% Al) results in better electrical and optical properties as compared to single Ag contacts when annealed at 430 °C. For example, Ag/AgAl (8 at% Al) contacts give specific contact resistance of 4.6×10–4 Ω cm2 and reflectance of 90% at a wavelength of 405 nm. However, use of an AgAl (with 50 at% Al) layer is not effective. LEDs fabricated with the Ag/AgAl (8 at% Al) reflectors produce higher light output as compared with the ones with single Ag reflectors. Ohmic mechanisms of the Ag/AgAl (8 at% Al) contacts are described and discussed.  相似文献   

4.
《Microelectronics Reliability》2014,54(6-7):1378-1383
This paper presents the results of four-point bending tests investigating the effects of substrate strain on the growth ɛ of interfacial Cu–Sn inter-metallic compounds (IMCs). Test specimens were cut into strips, 27.5 mm in length and 5 mm in width, from 4 in. double polished silicon wafers. A very thin adhesion layer (Ta) was deposited on the silicon substrate by sputtering followed by a 10 μm thick layer of copper using electroplating. Finally, a 30 μm tin layer was deposited over the copper film also by electroplating. Samples were then placed in a furnace at 200 °C to undergo bending in order to introduce in-plane strain under tension or compression. Control samples also underwent the same treatment without applied strain. Our aim was to investigate the influence of substrate strain and aging time on the formation of IMCs (1.54 × 10−4, 2.3 × 10−4 and 3.46 × 10−4). The thickness and separation of each phase (Cu3Sn) and η (Cu6Sn5) are clearly visible in scanning electron microscope images. Compressive strain and tensile strain both increased the thickness of the IMC layer during the aging process; however, the effects of compressive strain were more pronounced than those of tensile strain. We hypothesize that the increase in IMC thickness is related to the strain enhanced out-diffusion of Cu towards the solder as well as strain in the underlying lattice at the diffusion interface.  相似文献   

5.
Non-conductive film with Zn nano-particles (Zn-NCF) is an effective solution for fine-pitch Cu-pillar/Sn–Ag bump interconnection in terms of manufacturing process and interfacial reliability. In this study, NCFs with Zn nano-particles of different acidity, viscosity, and curing speed were formulated and diffused Zn contents in the Cu pillar/Sn–Ag bumps were measured after 3D TSV chip-stack bonding. Amount of Zn diffusion into the Cu pillar/Sn–Ag bumps increased as the acidity of resin increased, as the viscosity of resin decreased, as the curing speed of resin decreased, and as the bonding temperature increased. Diffusion of Zn nano-particles into the Cu pillar/Sn–Ag bumps are maximized when the resin viscosity became lowered and the solder oxide layer was removed. To analyze the effects of Zn-NCF on IMC reduction, IMC height depending on aging time was measured and corresponding activation energies for IMC growth were calculated. For the evaluation of joint reliabilities, test vehicles were bonded using NCFs with 0 wt%, 1 wt%, 5 wt%, and 10 wt% of Zn nano-particles and aged at 150 °C up to 500 h. NCF with 10 wt% Zn nano-particle showed remarkable suppression in Cu6Sn5 and (Cu,Ni)6Sn5 IMC compared to NCFs with 0 wt%, 1 wt%, and 5 wt% of Zn nano-particles. However, in terms of Cu3Sn IMC suppression, which is the most critical goal of this experiment NCFs with 1 wt%, 5 wt%, and 10 wt% showed an equal amount of IMC suppression. As a result, it was successfully demonstrated that the suppression of Cu–Sn IMCs was achieved by the addition of Zn nano-particles in the NCFs resulting an enhanced reliability performance in the Cu/Sn–Ag bumps bonding in 3D TSV interconnection.  相似文献   

6.
In this study, we investigated the influence of a buffer layer of molybdic oxide (MoO3) at the metal/organic junction on the behavior of organic base-modulation triodes. The performance of devices featuring MoO3/Al as the emitter electrode was enhanced relative to that of corresponding devices with Au and Ag, presumably because of the reduced in the contact barrier and the prevention of metal diffusion into the organic layer. The device exhibited an output current of ?16.1 μA at VB = ?5 V and a current ON/OFF ratio of 103. Using this architecture, we constructed resistance–load inverters that exhibited a calculated gain of 6.  相似文献   

7.
The growth behavior of interfacial intermetallic compounds (IMCs) layer of Co/Sn-10Bi and Co/Sn-10Bi/Co couple has been studied by scanning electron microscope. The critical temperature and shear strength of Co/Sn-10Bi/Co joints were tested by universal testing machine. The results showed that the thickness of CoSn3 IMCs layer increased as the increase of aging time and temperature. The growth rate of CoSn3 IMCs layer of Co/Sn-10Bi/Co couple was suppressed and was lower than that of Co/Sn-10Bi couple as the decline in Sn concentration of residual Sn-Bi layer. The critical temperature of Co/Sn-10Bi/Co joint that could hold a load of 1 N changed as the chemical composition of residual Sn-Bi layer changed. The shear strength of Co/Sn-10Bi/Co joints bonded at 240 °C for 20 min, 30 min, 40 min, and 50 min was between 58 MPa and 82 MPa. The shear strength of Co/Sn-10Bi/Co joint bonded at 240 °C for 60 min was only about 17 MPa. The damage in shear strength of Co/Sn-10Bi/Co joint bonded for 60 min was led by the crack in residual Bi layer.  相似文献   

8.
Thermoelectric delafossite (CuAlO2)1−x(Ag2O)x with 0<x<0.06 is prepared at three different sintering temperatures, 1323 K, 1373 K, and 1473 K. The samples are obtained from a mixture of CuO, Al2O3, and additive Ag2O powders. The mixture is ground and then pressed with uniaxial pressure into pellets. Differential scanning calorimetry and X-ray diffraction spectroscopy show that the sintering temperature to synthesize delafossite CuAlO2 with Ag2O addition is below 1473 K. X-ray diffraction patterns show the major phase of delafossite 3R-CuAlO2 along with a trace amount of 2H-CuAlO2. A small amount of the Ag phase is present in the samples depending on the amount of Ag2O addition and sintering temperature. Energy dispersive spectroscopy and backscattered electron image analyses show that the Ag phase is segregated around the grain boundary. Liquid-phase sintering is used to explain the growth mechanism. The CuAlO2 samples with Ag2O addition obviously exhibit enhanced bulk density, grain size, and electrical conductivity. The highest power factor (PF), obtained by CuAlO2 with 2 at% of Ag2O sintered at 1373 K, is 8.23×10−5 W/(m K2) at 873 K. Hence, our findings show an improvement for delafossite CuAlO2 by Ag2O addition.  相似文献   

9.
We developed a reliable and low cost chip-on-flex (COF) bonding technique using Sn-based bumps and a non-conductive adhesive (NCA). Two types of bump materials were used for the bonding process: Sn bumps and Sn–Ag bumps. The bonding process was performed at 180 °C for 10 s using a thermo-compression bonder after dispensing the NCA. Sn-based bumps were easily deformed to contact Cu pads during the bonding process. A thin layer of Cu6Sn5 intermetallic compound was observed at the interface between Sn-based bumps and Cu pads. After bonding, electrical measurements showed that all COF joints had very low contact resistance, and there were no failed joints. To evaluate the reliability of COF joints, high temperature storage tests (150 °C, 1000 h), thermal cycling tests (−25 °C/+125 °C, 1000 cycles) and temperature and humidity tests (85 °C/85% RH, 1000 h) were performed. Although contact resistance was slightly increased after the reliability test, all COF joints passed failure criteria. Therefore, the metallurgical bond resulted in good contact and improved the reliability of the joints.  相似文献   

10.
《Organic Electronics》2014,15(6):1077-1082
This study demonstrates the incorporation of a Cs2CO3:conjugated polyelectrolyte blended interfacial layer between the emissive layer and a silver (Ag) cathode, for realizing all-solution processed polymer light-emitting diodes. For a device with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the emissive layer, this approach improves the maximum luminance of approximately 80,000 cd/m2 and maximum current efficiency of 10.6 cd/A. It is clarified that the interfacial layer prevents Ag nanoparticles from penetrating into the emissive layer, resulting in yellow–green emission from F8BT. We also demonstrate the possibility of all-solution processed polymer light-emitting diodes utilizing solution-processed Cs2CO3:conjugated polyelectrolyte interfacial layer and Ag nano-ink.  相似文献   

11.
《Organic Electronics》2008,9(2):171-182
Two novel iridium complexes both containing carbazole-functionalized β-diketonate, Ir(ppy)2(CBDK) [bis(2-phenylpyridinato-N,C2)iridium(1-(carbazol-9-yl)-5,5-dimethylhexane-2,4-diketonate)], Ir(dfppy)2(CBDK) [bis(2-(2,4-difluorophenyl)pyridinato-N,C2)iridium(1-(carbazol-9-yl)-5,5-dimethylhexane-2,4-diketonate)] and two reported complexes, Ir(ppy)2(acac) (acac = acetylacetonate), Ir(dfppy)2(acac) were synthesized and characterized. The electrophosphorescent properties of non-doped device using the four complexes as emitter, respectively, with a configuration of ITO/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-diphenyl-4,4′-diamine (NPB) (20 nm)/iridium complex (20 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (5 nm)/tris(8-hydroxyquinoline)aluminum (AlQ) (45 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) were examined. In addition, a most simplest device, ITO/Ir(ppy)2(CBDK) (80 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm), and two double-layer devices with configurations of ITO/NPB (30 nm)/Ir(ppy)2(CBDK) (30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) and ITO/Ir(ppy)2(CBDK) (30 nm)/AlQ (30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) were also fabricated and examined. The results show that the non-doped four-layer device for Ir(ppy)2(CBDK) achieves maximum lumen efficiency of 4.54 lm/W and which is far higher than that of Ir(ppy)2(acac), 0.53 lm/W, the device for Ir(dfppy)2(CBDK) achieves maximum lumen efficiency of 0.51 lm/W and which is also far higher than that of Ir(dfppy)2(acac), 0.06 lm/W. The results of simple devices involved Ir(ppy)2(CBDK) show that the designed complex not only has a good hole transporting ability, but also has a good electron transporting ability. The improved performance of Ir(ppy)2(CBDK) and Ir(dfppy)2(CBDK) can be attributed to that the bulky carbazole-functionalized β-diketonate was introduced, therefore the carrier transporting property was improved and the triplet–triplet annihilation was reduced.  相似文献   

12.
The drop resistance and fracture behavior of Sn–37Pb, Sn–3.0Ag–0.5Cu (SAC305), Sn–1.0Ag–0.5Cu (SAC105), and Sn–8.5Zn–0.5Ag–0.01Al–0.1 Ga (SnZn-5e) solder ball joints under the board-level drop test (BLDT) and the ball impact test (BIT) were studied. The results show that the drop reliabilities in terms of the characteristic life ratio from the Weibul plot are SnZn-5e : Sn–37Pb:SAC105:SAC305 = 3.1:2.9:2.1:1. It was observed that failure of Sn–37Pb occurred at the eutectic tin–lead phase whereas it took place at the brittle interface between the (Cu,Ni)6Sn5 inter-metallic compound and Ni layer in SAC305. The failure of SAC105 was found to be located within the solder matrix as well as at the interface of the inter-metallic compound. The failure of SnZn-5e depends on the morphology of the interfacial inter-metallic compound. The failure modes of Sn–37Pb and SAC305 after the BIT were similar to those after the BLDT. The maximum impact force (Fmax) and the initial fracture energy (E) from the BIT can be used to evaluate the drop reliability of solder joints.  相似文献   

13.
We report on the specific contact resistance of interfaces between thin amorphous semiconductor Indium Tin Zinc Oxide (ITZO) channel layers and different source/drain (S/D) electrodes (Al, ITO, and Ni) in amorphous oxide thin film transistors (TFTs) at different channel lengths using a transmission line model. All the contacts showed linear current–voltage characteristics. The effects of different channel lengths (200–800 μm, step 200 μm) and the contact resistance on the performance of TFT devices are discussed in this work. The Al/ITZO TFT samples with the channel length of 200 μm showed metallic behavior with a linear drain current-gate voltage (IDVG) curve due to the formation of a conducting channel layer. The specific contact resistance (ρC) at the source or drain contact decreases as the gate voltage is increased from 0 to 10 V. The devices fabricated with Ni S/D electrodes show the best TFT characteristics such as highest field effect mobility (16.09 cm2/V·s), ON/OFF current ratio (3.27×106), lowest sub-threshold slope (0.10 V/dec) and specific contact resistance (8.62 Ω·cm2 at VG=0 V). This is found that the interfacial reaction between Al and a-ITZO semiconducting layer lead to the negative shift of threshold voltage. There is a trend that the specific contact resistance decreases with increasing the work function of S/D electrode. This result can be partially ascribed to better band alignment in the Ni/ITZO interface due to the work function of Ni (5.04–5.35 eV) and ITZO (5.00–6.10 eV) being somewhat similar.  相似文献   

14.
In this work, we present ball impact test (BIT) responses and fracture modes obtained at an impact velocity of 0.8 m/s on SAC (Sn–Ag–Cu) package-level solder joints with a trace amount of Mn or RE (rare earth) additions, which were bonded with substrates of OSP Cu and electroplated Ni/Au surface finishes respectively. With respect to the as-mounted conditions, the Ni/Au joints possessed better impact fracture resistance than those with Cu substrate. Subsequent to aging at 150 °C for 800 h, multi-layered intermetallic compounds emerged at the interface of the Ni/Au joints and gave rise to degradation of the BIT properties. This can be prevented by RE doping, which is able to inhibit the growth of interfacial IMCs during aging. As for aged Cu joints, the Mn-doped samples showed the best performance in impact force and toughness. This was related to the hardened Sn matrix, and most importantly, a greater Cu3Sn/Cu6Sn5 thickness ratio at the interface. Compared to Cu6Sn5, Cu3Sn with a similar hardness but greater elastic modulus possessed better plastic ability, which was beneficial to the reliability of solder joints suffering high strain rate deformation if no excess Kirkendall voids formed.  相似文献   

15.
《Organic Electronics》2014,15(9):1990-1997
The authors report the fabrication of efficient and transparent pentacene field-effect transistors (FETs) using a graded structure of ultra-thin silver (Ag) source and drain (S–D) electrodes. The S–D electrodes were prepared by thermal evaporation with a controlled deposition rate to form Ag layer with a graded structure, leading to a reduced injection barrier and smoothing the contact surface between the electrode and the pentacene channel. The sheet resistance of such Ag electrode was found to be as low as 9 Ω/sq. In addition, a hole-only behavior of device with Ag electrode characterized by current–voltage measurement and conductive atomic-force microscopy shows the injection property of high current flowing as compared with device using Au electrode, resulting in an efficient injection condition existing at the interface of the graded Ag/pentacene. Device characterization indicates the transparent pentacene FET with a graded ultra-thin Ag electrode and organic capping layer of N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine exhibits a high transmission rate of ∼75% in the range of visible light from 400 to 550 nm, a threshold voltage of −6.0 V, an on–off drain current ratio of 8.4 × 105, and a field-effect mobility of 1.71 cm2/V s, thus significantly outperforming pentacene FETs with multilayer oxide electrodes or other transparent thin metal layers.  相似文献   

16.
《Organic Electronics》2008,9(1):30-38
A multilayer organic light-emitting device (OLED) has been fabricated with a thin (0.3 nm) lithium fluoride (LiF) layer inserted inside an electron transport layer (ETL), aluminum tris(8-hydroxyquinoline) (Alq3). The LiF electron injection layer (EIL) has not been used at an Al/Alq3 interface in the device on purpose to observe properties of LiF. The electron injection-limited OLED with the LiF layer inside 50 nm Alq3 at a one forth, a half or a three forth position assures two different enhancing properties of LiF. When the LiF layer is positioned closer to the Al cathode, the injection-limited OLED shows enhanced injection by Al interdiffusion. The Al interdiffusion at least up to 12.5 nm inside Alq3 rules out the possible insulating buffer model in a small molecule bottom-emission (BE) OLED with a thin, less than one nanometer, electron injection layer (EIL). If the position is further away from the Al cathode, the Al diffusion reaches the LiF layer no longer and the device shows the electroluminescence (EL) enhancement without an enhanced injection. The suggested mechanism of LiF EL efficiency enhancer is that the thin LiF layer induces carrier trap sites and the trapped charges alters the distribution of the field inside the OLED and, consequently, gives a better recombination of the device. By substituting the Alq3 ETL region with copper phthalocyanine (CuPc), all of the electron injection from the cathode of Al/CuPc interface, the induced recombination at the Alq3 emitting layer (EML) by the LiF EL efficiency enhancer, and the operating voltage reduction from high conductive CuPc can be achieved. The enhanced property reaches 100 mA/cm2 of current density and 1000 cd/m2 of luminance at 5 V with its turn-on slightly larger than 2 V. The enhanced device is as good as our previously reported non-injection limited LiF EIL device [Yeonjin Yi, Seong Jun Kang, Kwanghee Cho, Jong Mo Koo, Kyul Han, Kyongjin Park, Myungkeun Noh, Chung Nam Whang, Kwangho Jeong, Appl. Phys. Lett. 86 (2005) 213502].  相似文献   

17.
Sol–gel processible organosilicate material based on dialkylviologen (1,1-(bis-trimethoxysilane)-[4,4′]bipyridium dibromide (bis-trimethoxypropylsilane)-yl-viologen, PV-Si) was synthesized and used as an interfacial layer material for polymer solar cells based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM). PV-Si is very good soluble in polar protic solvents because of two pyrinium bromide salts and PV-Si pre-polymer can be easily prepared by sol–gel chemistry under the mild acidic conditions. From the ultraviolet spectroscopy (UPS) study, the reduction of the work function of Al and ITO is observed by the formation of interface dipole, which is induced by the thin film of thermally cured PV-Si pre-polymer (cPV-Si) at 180 °C. The open circuit voltage (Voc) of conventional type polymer solar cell (CPSC) with a structure of ITO/active layer (P3HT:PCBM)/cPV-Si(<5 nm)/Al is 0.58 V, which is higher than the CPSC without cPV-Si (0.55 V). This indicates that the favorable interface dipole is generated by the thin film of cPV-Si. Besides, the power conversion efficiency (PCE) of CPSC with cPV-Si reaches at 2.90%, which is higher than that of the device without cPV-Si (2.69%). Surprisingly, the PCE and the short circuit current (Jsc) of inverted type polymer solar cell (IPSC) with a structure of ITO/cPV-Si (<5 nm)/active layer/WO3/Ag are 2.83% and ?9.19 mA/cm2, respectively, which are higher than those of the device with ZnO (2.51% and ?8.63 mA/cm2) as an electron transporting/injecting layer. This is due to that the work function of ITO is also reduced by the formation of interface dipole. The IPSC with cPV-Si as an interfacial layer (IFL) shows very good rectification and a contact property as well. From the results, the thin layer of cPV-Si is potential material for an IFL for either CPSC or IPSC. Especially, ZnO can be replaced by cPV-Si because of their improved device performances and pretty low processing temperature.  相似文献   

18.
There is an emission peak at 494 nm in the electroluminescence (EL) of PVK [poly(n-vinylcarbazole)]: Eu(o-BBA)3(phen) besides PVK exciton emission and Eu3+ characteristic emissions. Both the peaking at 494 nm emission and PVK emission influenced the color purity of red emission from Eu(o-BBA)3(phen). In order to restrain these emissions and obtain high intensity red emission, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) were co-doped in PVK solution and used as the active emission layer. The EL intensity of co-doped devices reached to 420 cd/m2 at 20 V driving voltage. The chromaticity coordinates of EL was invariable (x = 0.55, y = 0.36) with the increase of driving voltage. For further improvement of EL intensity, organic–inorganic hybrid devices (ITO/active emission layer/ZnS/Al) were fabricated. The EL intensity was increased by a factor of 2.5 [(420 cd/m2)/(168 cd/m2)] when the Eu complex was doped with an efficient dye DCJTB, and by a factor of ≈4 [(650 cd/m2)/(168 cd/m2)] when in addition ZnS layer was deposited on such an emitting layer prior to evaporation of the Al cathode.  相似文献   

19.
Copper wire has become a mainstream bonding material in fine-pitch applications due to the rising cost of gold wire. In recent years, palladium-coated copper (Pd–Cu) wire is being increasingly used to overcome some constraints posed by pure Cu wire. During wire bonding with aluminum bond pads, different intermetallic compound (IMC) phases that have been identified at the bond interface are typically CuAl2, CuAl and Cu9Al4. However, the corrosion susceptibility of these IMCs has not been investigated. This paper compares the electrical impedance and corrosion performance of the three types of Cu–Al IMCs in an acidic chloride medium by employing electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The analysis of the potentiodynamic polarization results was performed using Tafel extrapolation. A comparison was made with pure Cu and Al. The effect of Pd alloy on the IMC corrosion performance has also been studied. Among the three Cu–Al IMCs, Cu9Al4 was observed to have the largest corrosion rate followed by CuAl2 and CuAl. For the metals, Cu was observed to have the lowest corrosion rate and Al is the most easily corroded. The addition of Pd of up to 10 wt.% replacement of the Cu in the alloys slightly improves the corrosion resistance of the metals and IMCs.  相似文献   

20.
We report fabrication and electrical characterization of GaAs based metal-interfacial layer-semiconductor (MIS) device with poly[2-methoxy-5-(2/-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), as an interfacial layer. MEH-PPV raises the barrier height in Al/MEH-PPV/p-GaAs MIS device as high as to 0.87 eV. A Capacitance-Voltage (CV) characteristic exhibits a low hysteresis voltage with an interface states density of 1.69×1011 cm−2 eV−1. Moreover, a high transition frequency (fc) of about 50 kHz was observed in the accumulation mode. The photovoltaic response of Al/MEH-PPV/p-GaAs device was measured under the air masses (AM) 1.0 and 1.5. The open circuit voltage (VOC), short circuit current (ISC), fill factor and the efficiency of the Al/MEH-PPV/p-GaAs device were found to be 1.10 V, 0.52 mA, 0.65, and 5.92%, respectively, under AM 1.0 condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号