首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses the design, analysis and performance of a 2.4 GHz fully integrated low-power current-reused receiver front-end implemented in 0.18 μm CMOS technology. The front-end is composed of a single-to-differential low-noise amplifier (LNA), using high-Q differential transformers and inductors and a coupled switching mixer stage. The mixer transconductor and LNA share the same DC current. Measurements of performance show a conversion gain of 28.5 dB, noise figure of 6.6 dB, 1 dB compression point of −32.8 dBm and IIP3 of −23.3 dBm at a 250 kHz intermediate frequency, while dissipating 1.45 mA from a 1.2 V supply.  相似文献   

2.
We design a highly linear CMOS RF receiver front-end operating in the 5 GHz band using the modified derivative superposition (DS) method with one- or two-tuned inductors in the low noise amplifier (LNA) and mixer. This method can be used to adjust the magnitude and phase of the third-order currents at output, and thus ensure that they cancel each other out. We characterize the two front-ends by the third-order input intercept point (IIP3), voltage conversion gain, and a noise figure based on the TSMC 0.18 μm RF CMOS process. Our simulation results suggest that the front-end with one-tuned inductor in the mixer supports linearization with the DS method, which only sacrifices 1.9 dB of IIP3 while the other performance parameters are improved. Furthermore, the front-end with two-tuned inductors requires a precise optimum design point, because it has to adjust two inductances simultaneously for optimization. If the inductances have deviated from the optimum design point, the front-end with two-tuned inductors has worse IIP3 characteristic than the front-end with one-tuned inductor. With two-tuned inductors, the front-end has an IIP3 of 5.3 dBm with a noise figure (NF) of 4.7 dB and a voltage conversion gain of 23.1 dB. The front-end with one-tuned inductor has an IIP3 of 3.4 dBm with an NF of 4.4 dB and a voltage conversion gain of 24.5 dB. There is a power consumption of 9.2 mA from a 1.5 V supply.  相似文献   

3.
A new pipelined analog-to-digital converter (ADC) using second-generation current conveyor (CCII) is presented. Two main building blocks of the pipelined ADC, sample-and-hold (S/H) circuit and multiplying digital-to-analog converter (MDAC) are constructed of CCII instead of operational amplifier (OA). Experimental results show that the proposed CCII-based pipelined ADC can work at 12.5 MHz with a 7.3-bit resolution. The DNL is within −0.4 LSB and 0.4 LSB and INL is within −0.8 LSB and 0.8 LSB, respectively. The pipelined ADC is realized in TSMC 0.35 μm CMOS technology and consumes 29 mW under a 3.3 V power supply. The core size is 0.85×0.85 mm2. Sing-Yen Wu received the M.S. degree in the Department of Electronic Engineering from National Taipei University of Technology, Taipei, Taiwan, in 2005. His current research interests include CMOS pipelined analog-to-digital converters and mixed-signal integrated circuit. Lu-Po Liao received the M.S. degree in the Department of Electronic Engineering from National Taipei University of Technology, Taipei, Taiwan, in 2003. His current research interests include analog integrated circuit design and mixed-signal integrated circuit design. Chia-Chun Tsai received the Ph.D. degrees in Electrical Engineering from National Taiwan University, Taipei, Taiwan, 1991. From 1989 to 2005, he served at the Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan. Since 2005 he has been with the Department of Computer Science and Information Engineering, Nanhua University, Chiayi, Taiwan, where he is a Full Professor. His current research interests include VLSI design automation and mixed-signal IC designs.  相似文献   

4.
This paper presents a critical step in the realization of a robust, low overhead, current-based Built-In Self-Test (BIST) scheme for RF front-end circuits. The proposed approach involves sampling the high frequency supply current drawn by the circuit under test (CUT) and using it to extract information about various performance metrics of the RF CUT. The technique has inherently high fault coverage and can handle soft faults, hard faults as well as concurrent faults because it shifts the emphasis from detecting individual faults, to quantifying all the significant performance specifications of the CUT. This work also presents the realization of an HF current monitor which is a critical component in the proposed architecture. The current monitor has then been interfaced with three standard RF front-end circuits; a Low noise amplifier, a Single Balanced Mixer and a Voltage controlled oscillator, while minimally impacting their performance. The extracted information has then been used to create a mapping between variations in CUT performance and the sensed current spectrum. The monitor circuit has been fabricated in the IBM 6 metal, RF CMOS process, with a gain of 24 db and bandwidth of 3.9 GHz.  相似文献   

5.
A high-speed current conveyor based current comparator   总被引:1,自引:0,他引:1  
In this paper, a new high-speed current mode comparator based on inherent current conveyor and positive feedback properties is presented. This novel approach has resulted in major reduction of the response time and hence a wide band application of the circuit. Simulation results using HSPICE and 0.18 μm CMOS technology with 1.8 V supply confirms a propagation delay of less than 0.4 ns in the high frequency range of 700 MHz with 158 μw power dissipation. Under the above conditions, the accuracy of the input current is as low as 50 nA.  相似文献   

6.
After a theoretical and analytical study of the body effect in MOS transistors, this paper offers two useful models of this parasitic phenomenon. Thanks to these models, a design methodology, which takes advantage of the bulk terminal, allows to turn this well-known body-effect drawback into an analog advantage, giving thus an efficient alternative to overcome the design constraints of the CMOS VLSI wireless mass market. To illustrate the approach, four RF building blocks are presented. First, a 0.9 V 10 dB gain LNA, covering a frequency range 1.8-2.4 GHz, thanks to a body-effect common mode feedback, is detailed. Secondly, a body-effect linearity controlled pre-power amplifier is presented exhibiting a 5 dB m input compression point (ICP1) variation under 1.8 V power supply for half the current consumption. Lastly, two mixers based on body-effect mixing are presented, which achieve a 10 dB conversion gain under 1.4 V for a −52 dB LO-to-RF isolation. Well suited for low-power/low-voltage applications, these circuits implemented in a 0.18 μm CMOS VLSI technology are dedicated to multi-standard architectures and system-on-chip implementations.  相似文献   

7.
This paper presents a novel CMOS low-voltage and low-power positive second-generation current conveyor (CCII+). The proposed CCII+ uses two n-channel differential pairs instead of the complementary differential pairs; i.e. (n-channel and p-channel), to realize the input stage. This solution allows almost a rail-to-rail input and output operation; also it reduces the number of current mirrors needed in the input stage. The CCII+ is operating at supply voltages of ±0.75 V with a total standby current of 133 μA. The application of the proposed CCII+ to realize a MOS-C second order maximally flat low-pass filter is given. PSpice simulation results for the proposed CCII+ and its application are given. Ahmed H. Madian was born in Jeddah, Saudi Arabia in 1975. He received the B.Sc. degree with honors, and the M.Sc. degree in electronics and communications from Cairo University, Cairo, Egypt, in 1997, and 2001 respectively. He is currently a Research Assistant in the Electronics Engineering Department, Micro-Electronics Design Center, Egyptian Atomic Energy Authority, Cairo, Egypt. His research interests are in circuit theory; low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed/digital applications on filed programmable gate arrays. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the BSc degree with honors in 1994, the MSc degree in 1996, and the PhD degree in 1999, all from the Electronics and Communications Department, Cairo University, Egypt. He is currently an Associate Professor at the Electrical Engineering Department, Fayoum University, Egypt. He is currently also a visiting Associate Professor at the Electrical and Electronics Engineering Department, German University in Cairo, Egypt. In 2005, He was decorated with the Science Prize in Advanced Engineering Technology from the Academy of Scientific Research and technology. His research and teaching interests are in circuit theory, fully-integrated analog filters, high-frequency transconductance amplifiers, low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964,the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997-September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985-1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987-1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr Soliman gave a lecture at Nanyang Technological University, Singapore.Dr Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004-Now.  相似文献   

8.
It is well known that second-generation current conveyors (CCII) are widely used for the realization of second-order current-mode universal filters. A filter with high-quality factor (Q) and gain constant (K) suffers from various signal swing restrictions especially at its angular resonance frequency (ω0). This is due to the terminal voltages of the CCIIs limited by the power supply voltages and maximum allowable terminal currents of the CCIIs. In this paper, signal limitations of the CCII-based current-mode filters are investigated in detail. A filter example is given to exhibit the signal limitations of a universal current-mode filter. The time-domain and frequency-domain results of the proposed filter are also given to verify the theoretical analysis.  相似文献   

9.
周锋  高亭  兰飞  李巍  李宁  任俊彦 《半导体学报》2010,31(11):115009-5
本文介绍了一种应用于6-9 GHz超宽带系统的全集成差分CMOS射频前端电路设计。在该前端电路中应用了一种电阻负反馈形式的低噪声放大器和IQ两路合并结构的增益可变的折叠式正交混频器。芯片通过TSMC 0.13µm RF CMOS工艺流片,含ESD保护电路。经测试得该前端电路大电压增益为23~26dB,小电压增益为16~19dB;大增益下前端电路平均噪声系数为3.3-4.6dB,小增益下的带内输入三阶交调量(IIP3)为-12.6dBm。在1.2V电压下,消耗的总电流约为17mA。  相似文献   

10.
This paper presents an efficient method, based on the modified touring ant colony optimization algorithm, for null steering of linear antenna arrays by controlling both the amplitude and the phase of array elements. The maximum sidelobe level, the null depth level and the dynamic range ratio are taken into account in the pattern synthesis. Simulation results for Chebyshev patterns with the imposed single, multiple and broad nulls are given to show the effectiveness of the proposed method.  相似文献   

11.
This work describes the design and implementation of an ultra-low voltage, ultra-low power fully differential low noise amplifier (LNA) integrated with a down-conversion mixer for 2.4 GHz ZigBee application. An inductive-degenerated cascoded LNA is adapted and integrated with a double-balanced mixer which is targeted for low-power application. The proposed design has been extracted and simulated in a 0.13 μm standard CMOS technology. With a power consumption of 905 μW at a voltage headroom of 0.5 V, the proposed LNA-mixer integration reaches out to an integrated noise figure (NF) of 7.2 dB, a gain of 22.3 dB, 1 dB compression point (P1 dB) of −22.3 dBm and input-referred third-order intercept point (IIP3) of −10.8 dBm.  相似文献   

12.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The LNA, fabricated in the 0.18μm 1P6M CMOS technology, adopts a gain-switched technique to increase the linearity and enlarge the dynamic range. The mixer is an IQ-based passive topology. Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω. Combining LNA and mixer, the front-end measured performances in high gain state are: -15dB of Sll, 18.5dB of voltage gain, 4.6dB of noise figure, 15dBm of IIP3, 85dBm to -10dBm dynamic range. The full circuit drains 6mA from a 1.8V supply.  相似文献   

13.
A dual-band reconfigurable wireless receiver RF front-end is presented, which is based on the directconversion principle and consists of a low noise amplifer (LNA) and a down-converter. By utilizing a compact switchable on-chip symmetrical inductor, the RF front-end could be switched between two operation frequency bands without extra die area cost. This RF front-end has been implemented in the 180 nm CMOS process and the measured results show that the front-end could provide a gain of 25 dB and IIP3 of 6 dBm at 2.2 GHz, and a gain of 18.8 dB and IIP3 of 7.3 dBm at 4.5 GHz. The whole front-end consumes 12 mA current at 1.2 V voltage supply for the LNA and 2.1 mA current at 1.8 V for the mixer, with a die area of 1.2 × 1 mm^2.  相似文献   

14.
6 dBm at 2.2 GHz, and a gain of 18.8 dB and IIP3 of 7.3 dBm at 4.5 GHz. The whole front-end consumes 12 mA current at 1.2 V voltage supply for the LNA and 2.1 mA current at 1.8 V for the mixer, with a die area of 1.2 × 1 mm2.  相似文献   

15.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier(LNA) and a passive mixer with no external balun for near-zero-IF(Intermediate Frequency)/RF(Radio Frequency) applications are described.The LNA,fabricated in the 0.18μm 1P6M CMOS technology,adopts a gain-switched technique to increase the linearity and enlarge the dynamic range.The mixer is an IQ-based passive topology.Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω.Combining LNA and mixer,the front...  相似文献   

16.
This paper presents quadrature oscillator and universal filter based on translinear current conveyors. The proposed circuit can realize as a quadrature oscillator or a universal filter without changing the circuit topology. When it works as a quadrature oscillator, four quadrature current outputs and two quadrature voltage outputs can be obtained. The condition and frequency of oscillation of oscillator can be controlled orthogonally and electronically. When it works as a universal filter, low-pass, band-pass, high-stop, band-stop, and all-pass filtering functions can be obtained simultaneously. The natural frequency and quality factor of filters can be controlled orthogonally and electronically. The proposed topology is simulated using PSPICE simulators and experimental results are also used to confirm workability of new circuit.  相似文献   

17.
This paper presents static and dynamic studies of a new CMOS realization for the inverting second generation current conveyor circuit (ICCII). The proposed design offers enhanced functionalities compared to ICCII circuits previously presented in the literature. It is characterized by a rail to rail dynamic range with high accuracy, a low parasitic resistor at terminal X (1.6 Ω) and low power consumption (0.31 mW) with wide current mode (3.32 GHz) and voltage mode (3.9 GHz) bandwidths.Furthermore, a new MISO current mode bi-quadratic filter based on using ICCII circuits as active elements is proposed. This filter can realize all standard filter responses without changing the circuit topology. It is characterized by active and passive sensitivities less than unity and an adjustment independently between pole frequency and quality factor. The operating frequency limit of this filter is about 0.8 GHz with 0.674 mW power consumption.The proposed current conveyor circuits and bi-quadratic filter are tested by TSPICE using CMOS 0.18 µm TSMC technology with ±0.8 V supply voltage to verify the theoretical results.  相似文献   

18.
CMOS 射频低噪声放大器的设计   总被引:2,自引:0,他引:2       下载免费PDF全文
王磊  余宁梅   《电子器件》2005,28(3):489-493
讨论了CMOS射频低噪声放大器的相关设计问题,对影响其增益、噪声系数、线性度等性能指标的因素进行了分析,并综述了几种提高其综合性能指标的方法。在此基础上,采用SMIC0.25μm CMOS工艺库,给出了3.8GHz CMOSLNA的设计方案。HSPICE仿真结果表明:电路的功率增益为13.48dB,输入、输出匹配良好,噪声系数为2.9dB,功耗为46.41mw。  相似文献   

19.
张浩  李智群  王志功 《半导体学报》2010,31(11):115008-8
本文给出了一个应用于GPS、北斗、伽利略和Glonass四种卫星导航接收机的高性能双频多模射频前端。该射频前端主要包括有可配置的低噪声放大器、宽带有源单转双电路、高线性度的混频器和带隙基准电路。详细分析了寄生电容对源极电感负反馈低噪声放大器输入匹配的影响,通过在输入端使用两个不同的LC匹配网络和输出端使用开关电容的方法使低噪声放大器可以工作在1.2GHz和1.5GHz频带。同时使用混联的有源单转双电路在较大的带宽下仍能获得较好的平衡度。另外,混频器采用MGTR技术在低功耗的条件下来获得较高的线性度,并不恶化电路的其他性能。测试结果表明:在1227.6MHz和1557.42MHz频率下,噪声系数分别为2.1dB和2.0dB,增益分别为33.9dB和33.8dB,输入1dB压缩点分别0dBm和1dBm,在1.8V电源电压下功耗为16mW。  相似文献   

20.
The present paper deals with the optimal sizing of CMOS positive second-generation current conveyors (CCII+) employing an optimization algorithm. A contemporary non-gradient stochastic optimization algorithm, called bacterial foraging optimization (BFO) algorithm, has been employed to obtain the optimal physical dimensions of the constituent PMOS and NMOS transistors of the CCII+. The optimization problem has been cast as a bi-objective minimization problem, where we attempt to simultaneously minimize the parasitic X-port input resistance (RX) and maximize the high end cut-off frequency of the current signal (fci). The results have been presented for a large selection of bias currents (I0) and our proposed algorithm could largely outperform a similar algorithm, recently proposed, employing particle swarm optimization (PSO) algorithm and also the differential evolution (DE) algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号