首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
结合实际生产过程,在某10 MW生物质气化装置耦合600 MW燃煤机组上进行试验。本试验采用实际生产常用100%稻壳、50%稻壳+50%秸秆2种燃料模式。研究发现:在额定负荷下,生物质气化装置产生气体组分和热值稳定的生物质燃气;在气化装置75%~110%负荷下,生物质燃气热值随负荷增加而增加;保持燃煤机组600 MW负荷不变,投用生物质气化装置后,燃煤机组NOx产生量减少,污染物SO2、NOx排放在环保标准内,高温再热器出口汽温偏差大,减少标煤量3 300 kg/h,厂用电率降低0.02%。生物质气化耦合发电系统具有高效、环保、节能的优点,不仅可以高效利用生物质资源,还适用现代火电企业高质量发展和低碳化需求。  相似文献   

2.
基于生物质–太阳能气化的多联产系统模拟及分析   总被引:1,自引:0,他引:1  
提出一种基于太阳能–生物质气化技术并用于生产甲醇和发电的多联产系统。利用塔式集热镜场聚焦产生的800~1 200℃高温热源来驱动塔式太阳能气化反应器中的生物质气化反应,产生的合成气经压缩后送至甲醇合成塔,而未反应的合成气送至燃气–蒸汽联合循环系统中用于发电。对该系统进行了热力学分析,同时研究各参数包括水蒸气流量和气化温度对系统性能产生的影响。结果表明,调整水蒸气流量和气化温度将改变合成气的组分,影响到系统的甲醇产量和发电功率,当水蒸气流量为50 kg/s时系统效率达到最高值49.48%。随着水蒸气流量和气化温度增加,太阳能热份额逐步提高,系统相对节省率同步下降,同时系统的生物质节省率维持在50%左右。研究成果为高效利用新疆等西部地区丰富的太阳能和生物质资源提供了新途径。  相似文献   

3.
为了提高生物质的气化效率,掺杂煤作为惰性粒子,在流化床上进行了不同温度和生物质与煤不同质量比的气化试验,得出了各工况下气体产率及气化特性,分析了温度和质量比对二者的影响。结果表明:当气化温度在800~900℃之间时,温度提高,气化效率增加;当生物质与煤质量比为3∶1时,气化效率最佳。  相似文献   

4.
贝壳的主要成分为CaCO3,以贝壳为催化剂考察其对木屑生物质气化的催化效果。通过在不同剂料比及温度条件下生物质的的产气特性实验发现:水蒸气气氛中贝壳对木屑生物质最佳催化温度在750~950℃之间;贝壳主要加快催化含碳大分子裂解,气化效率与产气中H2+CO总含量以及H2/CO比有关;水蒸气气氛下,当温度为950℃、剂料比为20%时,碳转化率为94%,物料能量转化率为81%,比同温度下纯生物质的碳转化率和能量转化率分别提高了10.3%和6%。  相似文献   

5.
为实现污泥和农林废弃物的资源化利用,对两种污泥(城市工业污泥、造纸污泥)以及一种典型生物质秸秆开展了污泥掺混生物质热解后残碳气化特性的实验研究.结果表明,无论是工业污泥与秸秆掺混还是造纸污泥与秸秆掺混,随着秸秆掺混比例增加,其平均反应速率都逐渐提高,这表明生物质的掺混有利于改善生物质秸秆掺混污泥热解后残碳在高温区共气化...  相似文献   

6.
生物质分段热解气化工艺通过提升反应温度提高碳转化率、降低焦油含量。该工艺过程中利用部分生物质热解气化产气在气化炉外部的燃烧器进行燃烧产生高温烟气,为热解、气化过程提供热量。该文选取稻壳为原料,利用Aspen Plus软件,模拟稻壳与水蒸气分段热解气化工艺过程,该过程考虑了热量回收与利用以及产气的部分循环利用,通过流程模拟,分析了气化温度、水蒸气通入量对产气各组分的产量、碳转化率、产气低位热值的影响。结果表明:利用总产气量的15.4%~20.5%用于燃烧可实现分段热解气化工艺的热量自给。随着气化温度的升高,产气中H2和CO含量增加,碳转化率升高,产气低位热值在气化温度为700℃时最低,随后逐渐升高;水蒸气的通入量增加会提高H2和CO2的产量,使碳转化率升高,产气低位热值降低;在气化温度为800~1 000℃内,w(H2O)/w(B)0.15(水蒸气与生物质质量比)时,CO的产量随水蒸气的通入量增加而减少,碳转化率接近100%。  相似文献   

7.
串行流化床生物质催化制氢模拟研究   总被引:8,自引:4,他引:8  
氢是未来理想的清洁能源,寻求大规模的、洁净的、廉价制氢技术是各国科学家共同关心的问题。该文提出串行流化床生物质制氢技术,将生物质热解气化和燃烧过程分隔开,气化反应器和燃烧反应器之间依靠催化剂颗粒进行热量传递,分析了串行流化床生物质制氢的化学反应机理,实现生物质催化气化高效制氢。利用Aspen Plus软件,建立串行流化床气化反应器模型,对生物质催化气化制氢进行了模拟计算,研究了气化过程中温度、催化剂种类(方解石、菱镁矿和白云石)、以及催化剂与生物质配比等变化因素对生物质气化制氢的影响。结果表明催化剂中CaO组分对生物质气化制氢过程的催化作用非常显著,气化反应温度为 700-750℃时较为适宜。  相似文献   

8.
模拟垃圾流化床气化特性的实验研究   总被引:3,自引:0,他引:3  
利用自行设计建造的处理量为2.5 t/d大型流化床气化实验平台,在反应温度为550~750 ℃、空气系数0.4的工况下,对模拟垃圾(municipal solid waste,MSW)进行了气化试验研究,讨论反应产物特性随反应温度的变化规律。结果表明,对于模拟垃圾,在反应温度为650 ℃,空气系数0.4时能自稳定反应,气化气的可燃成分随温度上升而升高, 750 ℃ 时气化气的热值达6.9 MJ/m3,能量转化率63.5%;含碳飞灰的产率占反应物料的10%左右,在1 200 ℃即可以达到完全熔融,其自身热值15~29 MJ/kg。可凝物的产率占到了反应物料的30%~50%,可凝物中水分含量65%~93.5%。  相似文献   

9.
生物质分段热解气化工艺通过提升反应温度提高碳转化率、降低焦油含量。该工艺过程中利用部分生物质热解气化产气在气化炉外部的燃烧器进行燃烧产生高温烟气,为热解、气化过程提供热量。该文选取稻壳为原料,利用Aspen Plus软件,模拟稻壳与水蒸气分段热解气化工艺过程,该过程考虑了热量回收与利用以及产气的部分循环利用,通过流程模拟,分析了气化温度、水蒸气通入量对产气各组分的产量、碳转化率、产气低位热值的影响。结果表明:利用总产气量的15.4%~20.5%用于燃烧可实现分段热解气化工艺的热量自给。随着气化温度的升高,产气中H2和CO含量增加,碳转化率升高,产气低位热值在气化温度为700℃时最低,随后逐渐升高;水蒸气的通入量增加会提高H2和CO2的产量,使碳转化率升高,产气低位热值降低;在气化温度为800~1000℃内,w(H2O)/w(B) 〉0.15(水蒸气与生物质质量比)时,CO的产量随水蒸气的通入量增加而减少,碳转化率接近100%。  相似文献   

10.
郑凯  贾嘉 《东北电力技术》2015,36(3):7-9,44
对所构建的生物质与煤共气化系统进行了流程模拟,研究气化反应温度、生物质掺混比wbio和水蒸气与生物质的质量比S/B对气化特性及热力学性能的影响规律.结果表明,提高气化反应温度和S/B将在一定程度上降低气化合成气的热值和气化效率,其主要原因是反应过程的热能消耗同步增加,即更多的原料化学能被释放出来.相对于煤单独气化过程,掺混一定比例的生物质会降低气化效率,但有利于提高合成气的热值,降低污染物的排放量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号