首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Microelectronics Reliability》2014,54(12):2849-2852
The reactivity of phosphor with water was investigated by measuring pH change, and the results are compared with long-term reliability test results as well as scanning electron microscope (SEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) results. We found that the slope of pH change strongly depends on phosphor composition and represents a long-term reliability test result induced by phosphor in an LED package.  相似文献   

2.
冯列峰 《光电子.激光》2009,(12):1565-1568
通过自建装置精确测试了发光二极管(LED)的低频(小于102Hz)电学特性。电学测量表明,所有LED在低频下都表现出明显的负电容(NC)现象,且频率越低NC现象越明显。调制发光测量表明,相对发光强度在低频下表现出明显饱和现象,并且随频率增加而减小。比较电学和光学的测量结果可以证实,辐射发光是产生NC现象的主要原因。通过对LED电学测量结果的详细分析得出了NC随电压和频率的变化关系式。  相似文献   

3.
We have investigated the annealing-induced improved electrical properties of In(10 nm)/ITO(200 nm) contacts with p-type GaN. The contacts become ohmic with a specific contact resistance of 2.75×10–3 Ω cm2 upon annealing at 650 °C in air. X-ray photoemission spectroscopy (XPS) Ga 2p core levels obtained from the interface regions before and after annealing indicate a large band-bending of p-GaN, resulting in an increase in the Schottky barrier height. STEM/energy dispersive X-ray (EDX) profiling results exhibit the formation of interfacial In-Ga-Sn-oxide. Based on the STEM and XPS results, the ohmic formation mechanisms are described and discussed. It is also shown that patterning by nano-imprint lithography improves the light output power of blue LEDs by 18–28% as compared to that of LEDs fabricated with unpatterned In/ITO contacts.  相似文献   

4.
We report the enhancement of light extraction efficiency (LEE) and electrical performance in GaN-based green light-emitting diodes (LEDs) using ZnO nanorods formed on the etched surface of p-GaN. Green LEDs with hybrid ZnO nanorod structures grown on the hexagonally etched topmost layer of the LEDs, show an improvement in electroluminescence intensity that is 3.5 times higher than LEDs without any other surface treatments. The improvement in LEE in LEDs with nanohybrid structures was confirmed by finite-difference time-domain simulation analysis. Besides LEE enhancement, the surface etching effects on the reduction of leakage current of fabricated LEDs were also investigated.  相似文献   

5.
The mechanisms of carrier injection and recombination in a GaN/InGaN single quantum well light-emitting diodes have been studied. Strong defect-assisted tunneling behavior has been observed in both forward and reverse current–voltage characteristics. In addition to band-edge emission at 400 nm, the electroluminescence has also been attributed to radiative tunneling from band-to-deep level states and band-to-band tail states. The approximately current-squared dependence of light intensity at 400 nm even at high currents indicates dominant nonradiative recombination through deep-lying states within the space-charge region. Inhomogeneous avalanche breakdown luminescence, which is primarily caused by deep-level recombination, suggests a nonuniform spatial distribution of reverse leakage in these diodes.  相似文献   

6.
Organic-inorganic hybrid perovskite have recently drawn appreciable attention for applications in light-emitting diodes (LEDs). However, the weak exciton binding energy of the methylammonium lead iodide perovskite introduces large exciton dissociation and low radiative recombination on its application as emission layer in near-infrared LEDs. Herein, we demonstrate the simple method by incorporating of phenethylammonium iodide (PEAI) into the perovskite can concurrently improve the radiative recombination rate for improving perovskite LED performances. Additionally, by introducing PEAI dramatically constrains the growth of perovskite crystals during film forming, producing crystallites with small dimensions, reducing roughness, and pin-hole free. After optimizing the emission layer in the perovskite LED, a high optical output power of 458.03 μW and external quantum efficiency of 5.25% are achieved, which represents a ~50-fold enhancement in the quantum efficiency compared to device without PEAI. Our work suggests a broad application prospect of perovskite materials for high optical output power LEDs and eventually a potential for solution-processed electrically pumped NIR laser diodes.  相似文献   

7.
The electrical and optical degradation of green phosphorescent organic light-emitting diodes (OLEDs) stressed under 50 mA/cm2 pulsed currents with 10–50% duty cycles was studied. The stressing resulted in significant increases in low-bias leakage current and operational voltage. The luminance evolution comprised an initial rapid decay regime and a subsequent slow decay regime, and only the latter was governed predominantly by electrical excitation. Compared to continuous-wave stressing, pulsed stressing with 10% duty cycle improved the effective half life by only ∼15%, indicating that self-heating plays a minor role in the performance degradation process. Adding a reverse bias component to the pulsed current led to suppressed low-bias leakage and current-induced luminance decay due to defect removal and alleviated charge build-up.  相似文献   

8.
Since the emergence of organic-inorganic hybrid perovskites, the development of perovskite light-emitting diodes (PeLEDs) with green/red emission have made great progress, and the corresponding external quantum efficiency (EQE) has exceeded 20%. However, the research progress of blue-emitting PeLED still has certain challenges. In this article, a multi-cation per-bromine perovskite film is prepared by introducing polymer molecules poly(9-vinylcarbazole) (PVK) in an anti-solvent (chloroform). When the concentration of PVK is optimized to 0.1 mg/mL, a smooth, dense, high-quality film with photoluminescence quantum efficiency (PLQY) up to 20.70% is obtained. The introduction of PVK can assist the formation of perovskite films for interface modification via surface defect passivation. The optimized blue PeLED has a maximum brightness of 3136 cd/m2 and a maximum EQE of 3.49% at 488 nm. More importantly, the optimized blue PeLED has excellent color stability under high applied voltage up to 12 V or continuous operation.  相似文献   

9.
A hardware-software complex for measurements of the characteristics of electrical and optical noise in light-emitting diodes (LEDs) in the frequency range from 1 to 40 kHz is described. The electrical noise of several types of heterojunction-based LEDs are studied; these types include red-emission LEDs with AlInGaP/GaAs quantum wells and the green- and blue-emission LEDs with AlInGaN/SiC quantum wells are studied by the method of discrete samples. The spectra of all studied LEDs in the frequency range from 1 to 10 kHz have the form 1/f γ. It is noteworthy that, for red-emission LEDs, the exponent γ is significantly smaller than unity; this index is close to unity for the green- and blue-emission LEDs. The characteristic time of correlation of the noise of red-emission LEDs by several times exceeds the correlation times for the blue- and green-emission LEDs. It is shown that reduced functions of the amplitude distribution of the noise voltage are close to Gaussian functions with almost the same dispersion for all LED types.  相似文献   

10.
The electrical noise of commercially available laser diodes, an index guided AlGaInP diode lasing at 635 nm (SDL3038-11) and an InGaAlP-multiquantum well diode lasing at 670 nm (SVL71B), has been investigated over a wide current range of six orders of magnitude. After increasing proportionally with current at small currents (10 nA to 10 μA), the 1/f noise tends to saturate with increasing current in the range from 10 to 100 μA. For larger operating currents, the 1/f noise increases again, and with the current proportional to I2. Different noise sources were discovered below the lasing threshold current. The electrical noise at lower currents must be measured to assess the degradation of the active region of the laser diode.  相似文献   

11.
We describe a comparison of nanofabrication technologies for the fabrication of 2D photonic crystal structures on GaN/InGaN blue LEDs. Such devices exhibit enhanced brightness and the possibility of controlling the angular emission profile of emitted light. This paper describes three nano lithography techniques for patterning photonic crystal structures on the emitting faces of LEDs: direct-write electron beam lithography, hard stamp nanoimprint lithography and soft-stamp nanoimprint lithography with disposable embossing masters. In each case we describe variations on the technique as well as its advantages and disadvantages. Complete process details have been given for all three techniques. In addition, we show how high performance GaN dry etch techniques, coupled with optical process monitoring can transfer resist patterns into underlying GaN material with high fidelity.  相似文献   

12.
An experimental apparatus and procedure using noise measurement techniques have been developed in order to identify conduction mechanisms in RTDs due to defect assisted tunneling. The theory of noise measurements is discussed as the basis for the appropriate modelling of RTD noise data. The activation energies and capture cross-sections have been determined in a typical RTD for each of three distinct trap levels. A conjecture is made as to the physical location of the traps. This interpretation yields qualitative behavior consistent with the known bias and temperature dependence of the experimental results.  相似文献   

13.
In this paper,we present the design of an integrated low noise amplifier(LNA)for wireless local area network(WLAN)applications in the 5.15-5.825 GHz range using a SiGe BiCMOS technology.A novel method that can determine both the optimum bias point and the frequency point for achieving the minimum noise figure is put forward.The method can be used to determine the optimum impedance over a relevant wider operating frequency range.The results show that this kind of optimizing method is more suitable for the WLAN circuits design.The LNA gain is optimized and the noise figure(NF)is reduced.This method can also achieve the noise match and power match simultaneously.This proposal is applied on designing a LNA for IEEE 802.11a WLAN.The LNA exhibits a power gain large than 16 dB from 5.15 to 5.825 GHz range.The noise figure is lower than 2 dB.The OIP3 is 8 dBm.Also the LNA is matched to 50 Ω input impedance with 6 mA DC current for differential design.  相似文献   

14.
Three different pixels based on single-photon avalanche diodes for triggered applications, such as fluorescence lifetime measurements and high energy physics experiments, are presented. Each pixel consists of a 20 μm×100 μm (width×length) single photon avalanche diode and a monolithically integrated readout circuit. The sensors are operated in the gated mode of acquisition to reduce the probability to detect noise counts interferring with real radiation events. Each pixel includes a different readout circuit that allows to use low reverse bias overvoltages. Experimental results demonstrate that the three pixels present a similar behavior. The pixels get rid of afterpulses and present a reduced dark count probability by applying the gated operation. Noise figures are further improved by using low reverse bias overvoltages. The detectors exhibit an input dynamic range of 13.35 bits with short gated ‘on’ periods of 10 ns and a reverse bias overvoltage of 0.5 V. The three pixels have been fabricated in a standard HV-CMOS process.  相似文献   

15.
The emission zone profile in an organic light-emitting diode was extracted by fitting the experimentally measured far-field angular electroluminescence spectrum of a purposely designed device. It is based on a thin 10 nm emission layer doped with the red emitting phosphor Ir(MDQ)2acac. We find strong indications for light emission originating from outside of the emission layer, even though the device has electron and hole blocking layers. These are commonly assumed to completely confine the charge carrier recombination and hence the light emission to the emission layer. Since the calculated internal spectrum of the emission matches the emitter photoluminescence spectrum well, diffusion of the emitter molecules outside of the emission layer is hypothesized.  相似文献   

16.
The effects of p-type doping of wide bandgap ambipolar 4,4′-N,N′-dicarbazolebiphenyl (CBP) with WO3 were investigated through detailed electrical device characterization. It was found that, to achieve effective doping for improved hole injection and transport, the doping level should be greater than 20 mol% and the doped layer should be at least 10 nm thick. A large downward shift of the Fermi level in WO3-doped CBP causes band bending and depletion at the doped/undoped CBP interface, resulting in an additional energy barrier which hampers hole transport. Simplified green phosphorescent organic light-emitting diodes (PhOLEDs) with CBP as the hole transport and host material were fabricated. With a WO3-doped hole transport layer, the PhOLEDs attained brightness of 11,163 cd/m2 at 20 mA/cm2, and exhibited an improved reliability under constant-current stressing as compared to undoped PhOLEDs.  相似文献   

17.
A full coverage all-inorganic cesium lead halide perovskite CsPbBr3 film is achieved by introducing a small organic molecule material, 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB), as a solution additive. The light-emitting diode (LED) using this CsPbBr3:TmPyPB perovskite film as light emitting layer exhibit improved electroluminescent (EL) performance with the maximum brightness of 22309 cd/m2, highest current efficiency of 8.77 cd/A, and external quantum efficiency (EQE) of 2.27%, which are 8.6, 10.2 and 10.3 times to that of neat CsPbBr3 film based LED, respectively. The enhanced EL performances are ascribed to less current leakage due to full coverage, and improved electron transporting in the CsPbBr3:TmPyPB perovskite film.  相似文献   

18.
In this study, a trapezoidal-shaped electron blocking layer is proposed to improve efficiency droop of InGaN/GaN multiple quantum well light-emitting diodes. The energy band diagram, carrier distribution profile, electrostatic field, and electron current leakage are systematically investigated between two light-emitting diodes with different electron blocking layer structures. The simulation results show that, when traditional AlGaN electron blocking layer is replaced by trapezoidal-shaped electron blocking layer, the electron current leakage is dramatically reduced and the hole injection efficiency in markedly enhanced due to the better polarization match, the quantum-confined Stark effect is mitigated and the radiative recombination rate is increased in the active region subsequently, which are responsible for the alleviation of efficiency droop. The optical performance of light-emitting diodes with trapezoidal-shaped electron blocking layer is significantly improved when compared with its counterpart with traditional AlGaN electron blocking layer.  相似文献   

19.
An analysis of blue and near-ultraviolet (UV) light-emitting diodes (LEDs) and material structures explores the dependence of device performance on material properties as measured by various analytical techniques. The method used for reducing dislocations in the epitaxial III-N films that is explored here is homoepitaxial growth on commercial hybride vapor-phase epitaxy (HVPE) GaN substrates. Blue and UV LED devices are demonstrated to offer superior performance when grown on GaN substrates as compared to the more conventional sapphire substrate. In particular, the optical analysis of the near-UV LEDs on GaN versus ones on sapphire show substantially higher light output over the entire current-injection regime and twice the internal quantum efficiency at low forward current. As the wavelength is further decreased to the deep-UV, the performance improvement of the homoepitaxially grown structure as compared to that grown on sapphire is enhanced.  相似文献   

20.
A method for enhancing the light out-coupling efficiency of organic light-emitting devices (OLEDs) has been demonstrated by blending a low-refractive-index polymer, poly(2,2,3,3,3-pentafluoropropyl methacrylate) (PPFPMA), into the emission layer. The resonant wavelength of the weak microcavity devices blueshifted accompanied with a decrease in refractive indices of the light-emitting layers after the addition of PPFPMA. Stronger directed emission toward the surface normal was obtained when the resonant wavelength became closer to the peak wavelength of intrinsic emission spectrum of the organic emitters. The luminous efficiency of the devices was enhanced by more than 20%. The results suggest that the microcavity properties of the OLEDs can be tunable through blending low-refractive-index materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号