共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为了实现移动机器人在障碍环境中的路径规划,提出一种改进的混合蛙跳算法(SFLA).改进算法在原算法基础上引入交叉操作,并在青蛙更新策略中充分利用学习机制;此外提出了一种带控制参数的产生新个体的方法代替原本的随机更新操作.把路径规划问题转换为最小化问题,基于环境中目标和障碍物的位置定义青蛙的适应度,机器人依次到达每次迭代中最好蛙的位置,从而实现最优路径规划.移动机器人仿真实验中,与基本蛙跳算法和其他智能算法相比,改进算法在规划时间和成功次数上均有很大的提高.实验结果表明了改进算法的有效性. 相似文献
4.
王雅芳 《自动化与仪器仪表》2007,(6):77-80
介绍BP神经网络结构和学习方法,针对误差反向传播神经网络模型学习收敛速度慢、容易陷入局部极小点等缺点,本文对BP网络模型进行了改进。对原始数据采用非线性的归一化函数,提出一种更加有效的学习率改进算法,提高了网络的收敛速度,采用了一种新的权值及阈值初始化方法,以避免训练时误差陷入局部极小解,并对改进BP算法与传统的BP算法进行比较,验证了该算法的优越性。 相似文献
5.
6.
An enhanced cost-aware mapping algorithm based on improved shuffled frog leaping in network on chips
Boroumand Bahador Yaghoubi Elham Barekatain Behrang 《The Journal of supercomputing》2021,77(1):498-522
The Journal of Supercomputing - Network on chip (NoC) has been of great interest in recent years. However, according to the recent studies, high communication cost has been raised as the one most... 相似文献
7.
8.
This paper reports a new improved discrete shuffled frog leaping algorithm (ID-SFLA) and its application in multi-type sensor network optimization for the condition monitoring of a gearbox. A mathematical model is established to illustrate the sensor network optimization based on fault-sensor dependence matrix. The crossover and mutation operators of genetic algorithm (GA) are introduced into the update strategy of shuffled frog leaping algorithm (SFLA) and a new ID-SFLA is systematically developed. Numerical simulation results show that the ID-SFLA has an excellent global search ability and outstanding convergence performance. The ID-SFLA is applied to the sensor’s optimal selection for a gearbox. In comparison with GA and discrete shuffled frog leaping algorithm (D-SFLA), the proposed ID-SFLA not only poses an effective solving method with swarm intelligent algorithm, but also provides a new quick algorithm and thought for the solution of related integer NP-hard problem. 相似文献
9.
Bing Li Peng-yuan Liu Ren-xi Hu Shuang-shan Mi Jian-ping Fu 《Applied Soft Computing》2012,12(6):1708-1719
In this work, we present a novel classification scheme named fuzzy lattice classifier (FLC) based on the lattice framework and apply it to the bearing faults diagnosis problem. Different from the fuzzy lattice reasoning (FLR) model developed in literature, there is no need to tune any parameter and to compute the inclusion measure in the training procedure in our new FLC model. It can converge rapidly in a single pass through training patterns with a few induced rules. A series of experiments are conducted on five popular benchmark datasets and three bearing datasets to evaluate and compare the presented FLC with the FLR model as well as some other widely used classification methods. Experimental results indicate that the FLC yields a satisfactory classification performance with higher computation efficiency than other classifiers. It is very desirable to utilize the FLC scheme for on-line condition monitoring of bearings and other mechanical systems. 相似文献
10.
针对蔬菜总黄酮化学物提取过程复杂、非线性和生物参数难以在线测量等特点,提出了基于改进混合蛙跳算法优化最小二乘支持向量机的蔬菜总黄酮软测量模型。该模型对标准混合蛙跳算法进行改进,采用反向学习的种群初始化策略,确保个体分布的均匀性;并根据群体适应度方差大小,动态调整变异概率,使算法避免陷入局部最优;最后采用改进的混合蛙跳算法对最小二乘支持向量机的参数进行寻优,实现蔬菜总黄酮软测量。仿真结果表明,基于改进混合蛙跳算法的最小二乘支持向量机软测量模型具有测量精度高,稳定性好的优点,有利于蔬菜总黄酮化学物测量工程的实际应用。 相似文献
11.
李佳奇 《自动化与仪器仪表》2012,(4):196-197
在常规BP神经网络模型参考自适应控制器基础上采用改进型BP神经网络作为辨识器和控制器,组成新的模型参考神经网络自适应控制系统,利用改进型BP神经网络的优点弥补传统自适应方法的不足,使系统具有更强的鲁棒性,收敛更快,逼近精度更高的优点。仿真结果表明,该系统比传统BP神经网络模型参考自适应系统具有更好的稳定性和更快的响应速度。 相似文献
12.
一种改进的神经网络机械故障诊断专家系统 总被引:5,自引:0,他引:5
针对传统BP神经网络训练中收敛速度较慢的缺点,提出一种基于L-M算法的神经网络应用于机械设备故障诊断的专家系统。论述了神经网络的专家系统结构,并以7216圆锥轴承试验研究为例,建立了基于该算法的故障诊断模型。仿真结果表明:该模型显著缩短了训练时间,具有较高的准确性。运用该神经网络专家系统进行机械故障诊断是有效的。 相似文献
13.
MATLAB神经网络BP网络研究与应用 总被引:19,自引:5,他引:19
柳松青 《计算机工程与设计》2003,24(11):81-83,88
阐述了MATLAB神经网络,着重研究了其BP网络的网络结构,指出了BP算法的主要缺点,利用其工具箱中的函数对BP算法进行了改进。根据MATLAB神经网络BP网络的网络结构,提出了一种具有天气敏感性的基于快速BP算法的神经网络预测模型,并对电力短期负荷进行了预测。预测结果,证明了该算法的有效性。 相似文献
14.
A modular neural network approach to fault diagnosis 总被引:11,自引:0,他引:11
Rodriguez C. Rementeria S. Martin J.I. Lafuente A. Muguerza J. Perez J. 《Neural Networks, IEEE Transactions on》1996,7(2):326-340
Certain real-world applications present serious challenges to conventional neural-network design procedures. Blindly trying to train huge networks may lead to unsatisfactory results and wrong conclusions about the type of problems that can be tackled using that technology. In this paper a modular solution to power systems alarm handling and fault diagnosis is described that overcomes the limitations of "toy" alternatives constrained to small and fixed-topology electrical networks. In contrast to monolithic diagnosis systems, the neural-network-based approach presented here accomplishes the scalability and dynamic adaptability requirements of the application. Mapping the power grid onto a set of interconnected modules that model the functional behavior of electrical equipment provides the flexibility and speed demanded by the problem. After a preliminary generation of candidate fault locations, competition among hypotheses results in a fully justified diagnosis that may include simultaneous faults. The way in which the neural system is conceived allows for a natural parallel implementation. 相似文献
15.
16.
《Expert systems with applications》2014,41(13):5804-5816
Cloud computing aims to provide dynamic leasing of server capabilities as scalable virtualized services to end users. However, data centers hosting cloud applications consume vast amounts of electrical energy, thereby contributing to high operational costs and carbon footprints. Green cloud computing solutions that can not only minimize the operational costs but also reduce the environmental impact are necessary. This study focuses on the Infrastructure as a Service model, where custom virtual machines (VMs) are launched in appropriate servers available in a data center. A complete data center resource management scheme is presented in this paper. The scheme can not only ensure user quality of service (through service level agreements) but can also achieve maximum energy saving and green computing goals. Considering that the data center host is usually tens of thousands in size and that using an exact algorithm to solve the resource allocation problem is difficult, the modified shuffled frog leaping algorithm and improved extremal optimization are employed in this study to solve the dynamic allocation problem of VMs. Experimental results demonstrate that the proposed resource management scheme exhibits excellent performance in green cloud computing. 相似文献
17.
With the development of the condition-based maintenance techniques and the consequent requirement for good machine learning methods, new challenges arise in unsupervised learning. In the real-world situations, due to the relevant features that could exhibit the real machine condition are often unknown as priori, condition monitoring systems based on unimportant features, e.g. noise, might suffer high false-alarm rates, especially when the characteristics of failures are costly or difficult to learn. Therefore, it is important to select the most representative features for unsupervised learning in fault diagnostics. In this paper, a hybrid feature selection scheme (HFS) for unsupervised learning is proposed to improve the robustness and the accuracy of fault diagnostics. It provides a general framework of the feature selection based on significance evaluation and similarity measurement with respect to the multiple clustering solutions. The effectiveness of the proposed HFS method is demonstrated by a bearing fault diagnostics application and comparison with other features selection methods. 相似文献
18.
Taher Niknam Ehsan Azad Farsani 《Engineering Applications of Artificial Intelligence》2010,23(8):1340-1349
One of the very important way to save the electrical energy in distribution system is network reconfiguration for loss reduction. This paper proposes a new hybrid evolutionary algorithm for solving the distribution feeder reconfiguration (DFR) problem. The proposed hybrid evolutionary algorithm is the combination of SAPSO (self-adaptive particle swarm optimization) and MSFLA (modified shuffled frog leaping algorithm), called SAPSO–MSFLA, which can find optimal configuration of distribution network. In the PSO algorithm, appropriate adjustment of the parameters is cumbersome and usually requires a lot of time and effort. Therefore, a self-adaptive framework is proposed to improve the robustness of the PSO, also in the modified shuffled frog leaping algorithm (MSFLA) to improve the performance of algorithm a new frog leaping rule is proposed to improve the local exploration of the SFLA. The main idea of integrating SAPSO and MSFLA is to use their advantages and avoid their disadvantages. The proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization in minimum time. 相似文献
19.
针对在进近着陆的过程中,仪表着陆系统(ILS)易受到外界环境及空域的干扰,导致导航精度降低的问题,提出一种利用惯性导航系统(INS)与GBAS着陆系统(GLS)进行改进的组合导航算法,将组合导航系统输出位置信息之间的差值作为BP神经网络改进的无迹卡尔曼滤波器(UKF)的量测值,通过最优加权的方法得到系统的全局最优估计值。相比于传统的联邦滤波算法,该算法能有效降低测量噪声,减小飞机进近着陆时的误差,提高导航精度。 相似文献
20.
基于神经网络的多层控制系统智能故障诊断 总被引:3,自引:0,他引:3
蔡卫峰 《自动化与仪器仪表》2002,(5):18-22,25
阐述了智能故障诊断技术的特点,针对复杂多层次控制系统,提出了一种分层模块化设计方法及模块间故障变量传播的搜索模式;探讨了基于神经网络与其它理论方法相结合的几种智能化诊断模式,对应用的方法,特点作了进一步分析。 相似文献