首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an innovative extended Kalman filter (EKF) algorithm for pose tracking using the trifocal tensor is proposed. In the EKF, a constant-velocity motion model is used as the dynamic system, and the trifocal-tensor constraint is incorporated into the measurement model. The proposed method has the advantages of those structure- and-motion-based approaches in that the pose sequence can be computed with no prior information on the scene structure. It also has the strengths of those model-based algorithms in which no updating of the three-dimensional (3-D) structure is necessary in the computation. This results in a stable, accurate, and efficient algorithm. Experimental results show that the proposed approach outperformed other existing EKFs that tackle the same problem. An extension to the pose-tracking algorithm has been made to demonstrate the application of the trifocal constraint to fast recursive 3-D structure recovery.  相似文献   

2.
3.
Three-view multibody structure from motion   总被引:1,自引:0,他引:1  
We propose a geometric approach to 3-D motion segmentation from point correspondences in three perspective views. We demonstrate that after applying a polynomial embedding to the point correspondences they become related by the socalled multibody trilinear constraint and its associated multibody trifocal tensor, which are natural generalizations of the trilinear constraint and the trifocal tensor to multiple motions. We derive a rank constraint on the embedded correspondences, from which one can estimate the number of independent motions as well as linearly solve for the multibody trifocal tensor. We then show how to compute the epipolar lines associated with each image point from the common root of a set of univariate polynomials and the epipoles by solving a pair of plane clustering problems using Generalized PCA (GPCA). The individual trifocal tensors are then obtained from the second order derivatives of the multibody trilinear constraint. Given epipolar lines and epipoles, or trifocal tensors, one can immediately obtain an initial clustering of the correspondences. We use this clustering to initialize an iterative algorithm that alternates between the computation of the trifocal tensors and the segmentation of the correspondences. We test our algorithm on various synthetic and real scenes, and compare with other algebraic and iterative algorithms.  相似文献   

4.
We address the problem of camera motion and 3D structure reconstruction from line correspondences across multiple views, from initialization to final bundle adjustment. One of the main difficulties when dealing with line features is their algebraic representation. First, we consider the triangulation problem. Based on Plücker coordinates to represent the 3D lines, we propose a maximum likelihood algorithm, relying on linearizing the Plücker constraint and on a Plücker correction procedure, computing the closest Plücker coordinates to a given 6-vector. Second, we consider the bundle adjustment problem, which is essentially a nonlinear optimization process on camera motion and 3D line parameters. Previous overparameterizations of 3D lines induce gauge freedoms and/or internal consistency constraints. We propose the orthonormal representation, which allows handy nonlinear optimization of 3D lines using the minimum four parameters with an unconstrained optimization engine. We compare our algorithms to existing ones on simulated and real data. Results show that our triangulation algorithm outperforms standard linear and bias-corrected quasi-linear algorithms, and that bundle adjustment using our orthonormal representation yields results similar to the standard maximum likelihood trifocal tensor algorithm, while being usable for any number of views.  相似文献   

5.
This article deals with analysis of the dynamic content of a scene from an image sequence irrespective of the static or dynamic nature of the camera. The tasks involved can be the detection of moving objects in a scene observed by a mobile camera, or the identification of the movements of some relevant components of the scene relatively to the camera. This problem basically requires a motion-based segmentation step. We present a motion-based segmentation method relying on 2-D affine motion models and a statistical regularization approach which ensures stable motion-based partitions. This can be done without the explicit estimation of optic flow fields. Besides these partitions are linked in time. Therefore, the motion interpretation process can be performed on more than two successive frames. The ability to follow a given coherently moving region within an interval of several images of the sequence makes the interpretation process more robust and more comprehensive. Identification of the kinematic components of the scene is induced from an intermediate layer accomplishing a generic qualitative motion labeling. No 3-D measurements are required. Results obtained on several real-image sequences corresponding to complex outdoor situations are reported.  相似文献   

6.
Shot Change Detection Using Scene-Based Constraint   总被引:1,自引:0,他引:1  
A key step for managing a large video database is to partition the video sequences into shots. Past approaches to this problem tend to confuse gradual shot changes with changes caused by smooth camera motions. This is in part due to the fact that camera motion has not been dealt with in a more fundamental way. We propose an approach that is based on a physical constraint used in optical flow analysis, namely, the total brightness of a scene point across two frames should remain constant if the change across two frames is a result of smooth camera motion. Since the brightness constraint would be violated across a shot change, the detection can be based on detecting the violation of this constraint. It is robust because it uses only the qualitative aspect of the brightness constraint—detecting a scene change rather than estimating the scene itself. Moreover, by tapping on the significant know-how in using this constraint, the algorithm's robustness is further enhanced. Experimental results are presented to demonstrate the performance of various algorithms. It was shown that our algorithm is less likely to interpret gradual camera motions as shot changes, resulting in a significantly better precision performance than most other algorithms.  相似文献   

7.
This paper presents a novel method that acquires camera position and orientation from a stereo image sequence without prior knowledge of the scene. To make the algorithm robust, the interacting multiple model probabilistic data association filter (IMMPDAF) is introduced. The interacting multiple model (IMM) technique allows the existence of more than one dynamic system in the filtering process and in return leads to improved accuracy and stability even under abrupt motion changes. The probabilistic data association (PDA) framework makes the automatic selection of measurement sets possible, resulting in enhanced robustness to occlusions and moving objects. In addition to the IMMPDAF, the trifocal tensor is employed in the computation so that the step of reconstructing the 3-D models can be eliminated. This further guarantees the precision of estimation and computation efficiency. Real stereo image sequences have been used to test the proposed method in the experiment. The recovered 3-D motions are accurate in comparison with the ground truth data and have been applied to control cameras in a virtual environment.  相似文献   

8.
This paper presents an efficient image-based approach to navigate a scene based on only three wide-baseline uncalibrated images without the explicit use of a 3D model. After automatically recovering corresponding points between each pair of images, an accurate trifocal plane is extracted from the trifocal tensor of these three images. Next, based on a small number of feature marks using a friendly GUI, the correct dense disparity maps are obtained by using our trinocular-stereo algorithm. Employing the barycentric warping scheme with the computed disparity, we can generate an arbitrary novel view within a triangle spanned by three camera centers. Furthermore, after self-calibration of the cameras, 3D objects can be correctly augmented into the virtual environment synthesized by the tri-view morphing algorithm. Three applications of the tri-view morphing algorithm are demonstrated. The first one is 4D video synthesis, which can be used to fill in the gap between a few sparsely located video cameras to synthetically generate a video from a virtual moving camera. This synthetic camera can be used to view the dynamic scene from a novel view instead of the original static camera views. The second application is multiple view morphing, where we can seamlessly fly through the scene over a 2D space constructed by more than three cameras. The last one is dynamic scene synthesis using three still images, where several rigid objects may move in any orientation or direction. After segmenting three reference frames into several layers, the novel views in the dynamic scene can be generated by applying our algorithm. Finally, the experiments are presented to illustrate that a series of photo-realistic virtual views can be generated to fly through a virtual environment covered by several static cameras.  相似文献   

9.
We propose a novel minimal solver for recovering camera motion across two views of a calibrated stereo rig. The algorithm can handle any assorted combination of point and line features across the four images and facilitates a visual odometry pipeline that is enhanced by well-localized and reliably-tracked line features while retaining the well-known advantages of point features. The mathematical framework of our method is based on trifocal tensor geometry and a quaternion representation of rotation matrices. A simple polynomial system is developed from which camera motion parameters may be extracted more robustly in the presence of severe noise, as compared to the conventionally employed direct linear/subspace solutions. This is demonstrated with extensive experiments and comparisons against the 3-point and line-sfm algorithms.  相似文献   

10.
This paper presents a scheme that addresses the practical issues associated with producing a geometric model of a scene using a passive sensing technique. The proposed image-based scheme comprises a recursive structure recovery method and a recursive surface reconstruction technique. The former method employs a robust corner-tracking algorithm that copes with the appearance and disappearance of features and a corner-based structure and motion estimation algorithm that handles the inclusion and expiration of features. The novel formulation and dual extended Kalman filter computational framework of the estimation algorithm provide an efficient approach to metric structure recovery that does not require any prior knowledge about the camera or scene. The newly developed surface reconstruction technique employs a visibility constraint to iteratively refine and ultimately yield a triangulated surface that envelops the recovered scene structure and can produce views consistent with those of the original image sequence. Results on simulated data and synthetic and real imagery illustrate that the proposed scheme is robust, accurate, and has good numerical stability, even when features are repeatedly absent or their image locations are affected by extreme levels of noise.  相似文献   

11.
This paper presents a novel approach for image-based visual servoing of a robot manipulator with an eye-in-hand camera when the camera parameters are not calibrated and the 3-D coordinates of the features are not known. Both point and line features are considered. This paper extends the concept of depth-independent interaction (or image Jacobian) matrix, developed in earlier work for visual servoing using point features and fixed cameras, to the problem using eye-in-hand cameras and point and line features. By using the depth-independent interaction matrix, it is possible to linearly parameterize, by the unknown camera parameters and the unknown coordinates of the features, the closed-loop dynamics of the system. A new algorithm is developed to estimate unknown parameters online by combining the Slotine–Li method with the idea of structure from motion in computer vision. By minimizing the errors between the real and estimated projections of the feature on multiple images captured during motion of the robot, this new adaptive algorithm can guarantee the convergence of the estimated parameters to the real values up to a scale. On the basis of the nonlinear robot dynamics, we proved asymptotic convergence of the image errors by the Lyapunov theory. Experiments have been conducted to demonstrate the performance of the proposed controller.   相似文献   

12.
Lines and Points in Three Views and the Trifocal Tensor   总被引:7,自引:3,他引:7  
This paper discusses the basic role of the trifocal tensor in scene reconstruction from three views. This 3× 3× 3 tensor plays a role in the analysis of scenes from three views analogous to the role played by the fundamental matrix in the two-view case. In particular, the trifocal tensor may be computed by a linear algorithm from a set of 13 line correspondences in three views. It is further shown in this paper, that the trifocal tensor is essentially identical to a set of coefficients introduced by Shashua to effect point transfer in the three view case. This observation means that the 13-line algorithm may be extended to allow for the computation of the trifocal tensor given any mixture of sufficiently many line and point correspondences. From the trifocal tensor the camera matrices of the images may be computed, and the scene may be reconstructed. For unrelated uncalibrated cameras, this reconstruction will be unique up to projectivity. Thus, projective reconstruction of a set of lines and points may be carried out linearly from three views.  相似文献   

13.
This paper addresses the problem of 3-D reconstruction of nonrigid objects from uncalibrated image sequences. Under the assumption of affine camera and that the nonrigid object is composed of a rigid part and a deformation part, we propose a stratification approach to recover the structure of nonrigid objects by first reconstructing the structure in affine space and then upgrading it to the Euclidean space. The novelty and main features of the method lies in several aspects. First, we propose a deformation weight constraint to the problem and prove the invariability between the recovered structure and shape bases under this constraint. The constraint was not observed by previous studies. Second, we propose a constrained power factorization algorithm to recover the deformation structure in affine space. The algorithm overcomes some limitations of a previous singular-value-decomposition-based method. It can even work with missing data in the tracking matrix. Third, we propose to separate the rigid features from the deformation ones in 3-D affine space, which makes the detection more accurate and robust. The stratification matrix is estimated from the rigid features, which may relax the influence of large tracking errors in the deformation part. Extensive experiments on synthetic data and real sequences validate the proposed method and show improvements over existing solutions.  相似文献   

14.
摄像机运动情况下的运动对象检测   总被引:2,自引:0,他引:2  
周兵  李波  毕波 《自动化学报》2003,29(3):472-480
在监控应用中,由于场景是已知的,因此可以使用背景减去法检测运动对象.当摄像机进行扫描和倾斜运动时,需要使用多个图像帧才能完整地表示监控场景.如何组织和索引这些背景帧属于摄像机跟踪问题.提出一种无需摄像机标定的背景帧索引和访问方法.这一方法需要使用图像配准技术估计图像初始运动参数.提出一种屏蔽外点的图像配准算法,综合利用线性回归和稳健回归快速估计初始运动参数.为了快速计算连续帧之间的运动参数,提出一种基于四参数模型的优化算法.利用非参数背景维护模型抑制虚假运动象素.室内和户外实验结果表明本文方法是有效的.  相似文献   

15.
Inserting synthetic objects into video sequences has gained much interest in recent years. Fast and robust vision-based algorithms are necessary to make such an application possible. Traditional pose tracking schemes using recursive structure from motion techniques adopt one Kalman filter and thus only favor a certain type of camera motion. We propose a robust simultaneous pose tracking and structure recovery algorithm using the interacting multiple model (IMM) to improve performance. In particular, a set of three extended Kalman filters (EKFs), each describing a frequently occurring camera motion in real situations (general, pure translation, pure rotation), is applied within the IMM framework to track the pose of a scene. Another set of EKFs,one filter for each model point, is used to refine the positions of the model features in the 3-D space. The filters for pose tracking and structure refinement are executed in an interleaved manner. The results are used for inserting virtual objects into the original video footage. The performance of the algorithm is demonstrated with both synthetic and real data. Comparisons with different approaches have been performed and show that our method is more efficient and accurate.  相似文献   

16.
目的 目前,特征点轨迹稳像算法无法兼顾轨迹长度、鲁棒性及轨迹利用率,因此容易造成该类算法的视频稳像结果扭曲失真或者局部不稳。针对此问题,提出基于三焦点张量重投影的特征点轨迹稳像算法。方法 利用三焦点张量构建长虚拟轨迹,通过平滑虚拟轨迹定义稳定视图,然后利用三焦点张量将实特征点重投影到稳定视图,以此实现实特征点轨迹的平滑,最后利用网格变形生成稳定帧。结果 对大量不同类型的视频进行稳像效果测试,并且与典型的特征点轨迹稳像算法以及商业软件进行稳像效果对比,其中包括基于轨迹增长的稳像算法、基于对极几何点转移的稳像算法以及商业软件Warp Stabilizer。本文算法的轨迹长度要求低、轨迹利用率高以及鲁棒性好,对于92%剧烈抖动的视频,稳像效果优于基于轨迹增长的稳像算法;对于93%缺乏长轨迹的视频以及71.4%存在滚动快门失真的视频,稳像效果优于Warp Stabilizer;而与基于对极几何点转移的稳像算法相比,退化情况更少,可避免摄像机阶段性静止、摄像机纯旋转等情况带来的算法失效问题。结论 本文算法对摄像机运动模式和场景深度限制少,不仅适宜处理缺少视差、场景结构非平面、滚动快门失真等常见的视频稳像问题,而且在摄像机摇头、运动模糊、剧烈抖动等长轨迹缺乏的情况下,依然能取得较好的稳像效果,但该算法的时间性能还有所不足。  相似文献   

17.
Due to their wide field of view, omnidirectional cameras are becoming ubiquitous in many mobile robotic applications.  A challenging problem consists of using these sensors, mounted on mobile robotic platforms, as visual compasses (VCs) to provide an estimate of the rotational motion of the camera/robot from the omnidirectional video stream. Existing VC algorithms suffer from some practical limitations, since they require a precise knowledge either of the camera-calibration parameters, or the 3-D geometry of the observed scene. In this paper we present a novel multiple-view geometry constraint for paracatadioptric views of lines in 3-D, that we use to design a VC algorithm that does not require either the knowledge of the camera calibration parameters, or the 3-D scene geometry. In addition, our algorithm runs in real time since it relies on a closed-form estimate of the camera/robot rotation, and can address the image-feature correspondence problem. Extensive simulations and experiments with real robots have been performed to show the accuracy and robustness of the proposed method.  相似文献   

18.
A traditional approach to extracting geometric information from a large scene is to compute multiple 3-D depth maps from stereo pairs or direct range finders, and then to merge the 3-D data. However, the resulting merged depth maps may be subject to merging errors if the relative poses between depth maps are not known exactly. In addition, the 3-D data may also have to be resampled before merging, which adds additional complexity and potential sources of errors.This paper provides a means of directly extracting 3-D data covering a very wide field of view, thus by-passing the need for numerous depth map merging. In our work, cylindrical images are first composited from sequences of images taken while the camera is rotated 360° about a vertical axis. By taking such image panoramas at different camera locations, we can recover 3-D data of the scene using a set of simple techniques: feature tracking, an 8-point structure from motion algorithm, and multibaseline stereo. We also investigate the effect of median filtering on the recovered 3-D point distributions, and show the results of our approach applied to both synthetic and real scenes.  相似文献   

19.
Two novel systems computing dense three-dimensional (3-D) scene flow and structure from multiview image sequences are described in this paper. We do not assume rigidity of the scene motion, thus allowing for nonrigid motion in the scene. The first system, integrated model-based system (IMS), assumes that each small local image region is undergoing 3-D affine motion. Non-linear motion model fitting based on both optical flow constraints and stereo constraints is then carried out on each local region in order to simultaneously estimate 3-D motion correspondences and structure. The second system is based on extended gradient-based system (EGS), a natural extension of two-dimensional (2-D) optical flow computation. In this method, a new hierarchical rule-based stereo matching algorithm is first developed to estimate the initial disparity map. Different available constraints under a multiview camera setup are further investigated and utilized in the proposed motion estimation. We use image segmentation information to adopt and maintain the motion and depth discontinuities. Within the framework for EGS, we present two different formulations for 3-D scene flow and structure computation. One formulation assumes that initial disparity map is accurate, while the other does not. Experimental results on both synthetic and real imagery demonstrate the effectiveness of our 3-D motion and structure recovery schemes. Empirical comparison between IMS and EGS is also reported.  相似文献   

20.
A novel image-mosaicking technique suitable for 3-D visualization of roadside buildings on websites or mobile systems is proposed. Our method was tested on a roadside building scene taken using a side-looking video camera employing a continuous set of vertical-textured planar faces. A vertical plane approximation of the scene geometry for each frame was calculated using sparsely distributed feature points that were assigned 3-D data through bundle adjustments. These vertical planes were concatenated to create an approximate model on which the images could be backprojected as textures and blended together. Additionally, our proposed method includes an expanded crossed-slits projection around far-range areas to reduce the "ghost effect," a phenomenon in which a particular object appears repeatedly in a created image mosaic. The final step was to produce seamless image mosaics using Dijkstra's algorithm to find the optimum seam line to blend overlapping images. We used our algorithm to create efficient image mosaics in 3-D space from a sequence of real images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号