首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the integration of a lead zirconate titanate, \(\hbox {Pb[Zr}_{x}\hbox {Ti}_{1-x}\hbox {O}_{3}\)] (PZT), piezoelectric transducer disk into the top plate of an otherwise conventional electrowetting-on-dielectric (EWD) digital microfluidics device to demonstrate on-demand induction of circulating fluid flow within single 200 nL droplets. Microparticle image velocimetry was used to measure in-plane velocity distributions for PZT excitation voltages that ranged from 0 to 50 \(\hbox {V}_{\text {RMS}}\). Intra-droplet streaming velocities in excess of 2.0 \(\hbox {mm}\cdot \hbox {s}^{-1}\) were observed without droplet breakup or damage to the EWD device layer. Additionally, we found median intra-droplet streaming velocity to depend quadratically on PZT excitation voltage up to the stress limit of the interfacial boundary. Our approach offers an alternative device architecture for active micromixing strategies in EWD digital microfluidics laboratory-on-chip systems.  相似文献   

2.
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system \(\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)\). We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of \((R,+)\) instead of \(\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}\). Particularly, if \(d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}\) where \(p_1, \ldots , p_s\) are distinct primes and \(3\le p_1^{a_1}\le \cdots \le p_s^{a_s}\), we present \(p_1^{a_1}-1\) MUMEB’s in \(\mathbb {C}^d\otimes \mathbb {C}^d\) by taking \(R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}\), direct sum of finite fields (Theorem 3.3).  相似文献   

3.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

4.
A novel ν-twin support vector machine with Universum data (\(\mathfrak {U}_{\nu }\)-TSVM) is proposed in this paper. \(\mathfrak {U}_{\nu }\)-TSVM allows to incorporate the prior knowledge embedded in the unlabeled samples into the supervised learning. It aims to utilize these prior knowledge to improve the generalization performance. Different from the conventional \(\mathfrak {U}\)-SVM, \(\mathfrak {U}_{\nu }\)-TSVM employs two Hinge loss functions to make the Universum data lie in a nonparallel insensitive loss tube, which makes it exploit these prior knowledge more flexibly. In addition, the newly introduced parameters ν1, ν2 in the \(\mathfrak {U}_{\nu }\)-TSVM have better theoretical interpretation than the penalty factor c in the \(\mathfrak {U}\)-TSVM. Numerical experiments on seventeen benchmark datasets, handwritten digit recognition, and gender classification indicate that the Universum indeed contributes to improving the prediction accuracy. Moreover, our \(\mathfrak {U}_{\nu }\)-TSVM is far superior to the other three algorithms (\(\mathfrak {U}\)-SVM, ν-TSVM and \(\mathfrak {U}\)-TSVM) from the prediction accuracy.  相似文献   

5.
The calculus T? is a successor-free version of Gödel’s T. It is well known that a number of important complexity classes, like e.g. the classes logspace, \(\textsc{p}\), \(\textsc{linspace}\), \(\textsc{etime}\) and \(\textsc{pspace}\), are captured by natural fragments of T? and related calculi. We introduce the calculus T, which is a non-deterministic variant of T?, and compare the computational power of T and T?. First, we provide a denotational semantics for T and prove this semantics to be adequate. Furthermore, we prove that \(\textsc{linspace}\subseteq \mathcal {G}^{\backsim }_{0} \subseteq \textsc{linspace}\) and \(\textsc{etime}\subseteq \mathcal {G}^{\backsim }_{1} \subseteq \textsc{pspace}\) where \(\mathcal {G}^{\backsim }_{0}\) and \(\mathcal {G}^{\backsim }_{1}\) are classes of problems decidable by certain fragments of T. (It is proved elsewhere that the corresponding fragments of T? equal respectively \(\textsc{linspace}\) and \(\textsc{etime}\).) Finally, we show a way to interpret T in T?.  相似文献   

6.
7.
This paper deals with the finite approximation of the first passage models for discrete-time Markov decision processes with varying discount factors. For a given control model \(\mathcal {M}\) with denumerable states and compact Borel action sets, and possibly unbounded reward functions, under reasonable conditions we prove that there exists a sequence of control models \(\mathcal {M}_{n}\) such that the first passage optimal rewards and policies of \(\mathcal {M}_{n}\) converge to those of \(\mathcal {M}\), respectively. Based on the convergence theorems, we propose a finite-state and finite-action truncation method for the given control model \(\mathcal {M}\), and show that the first passage optimal reward and policies of \(\mathcal {M}\) can be approximated by those of the solvable truncated finite control models. Finally, we give the corresponding value and policy iteration algorithms to solve the finite approximation models.  相似文献   

8.
This paper deals with the fuzzy set-valued functions of real variables on time scale whose values are normal, convex, upper semicontinuous and compactly supported fuzzy sets in \(\mathbb {R}^{n}\). We introduce and study the fundamental properties of new class of derivative called generalized delta derivative (\(\Delta _{g}\)-derivative) and generalized delta integral (\(\Delta _{g}\)-integral) for such fuzzy functions.  相似文献   

9.
10.
Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length \(n=q^{m}-1\) over \(F_{q}\), where \(q\ge 5\) is a prime power. The second one is the asymmetric quantum codes with length \(n=3^{m}-1\). These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set \(T_{1}=T_{2}^{-q}\), then the real Z-distance of our asymmetric quantum codes are much larger than \(\delta _\mathrm{max}+1\), where \(\delta _\mathrm{max}\) is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.  相似文献   

11.
In this paper, we propose an extended block Krylov process to construct two biorthogonal bases for the extended Krylov subspaces \(\mathbb {K}_{m}^e(A,V)\) and \(\mathbb {K}_{m}^e(A^{T},W)\), where \(A \in \mathbb {R}^{n \times n}\) and \(V,~W \in \mathbb {R}^{n \times p}\). After deriving some new theoretical results and algebraic properties, we apply the proposed algorithm with moment matching techniques for model reduction in large scale dynamical systems. Numerical experiments for large and sparse problems are given to show the efficiency of the proposed method.  相似文献   

12.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

13.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

14.
In quantum cryptography, a one-way permutation is a bounded unitary operator \(U:\mathcal {H} \rightarrow \mathcal {H}\) on a Hilbert space \(\mathcal {H}\) that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92–103, 2003) has conjectured that the unitary transformation \(g(a,x)=(a,f(x)+ax)\), where f is any length-preserving function and \(a,x \in \hbox {GF}_{{2}^{\Vert x\Vert }}\), is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin’s one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly(x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.  相似文献   

15.
In this paper, I propose an evolutionary model that is an alternative to conventional models of growth and the environment. Global economic growth, the evolution of the human population, \(\hbox {CO}_{2}\) emissions, and the state of the environment are endogenous. Societal values are the main driver of all economic variables. They determine the different types of investment, the level of aggregate consumption and employment. Societal values evolve over time in response to economic and environmental conditions. The model is applied to generate possible scenarios for the twenty-first century. A baseline calibration generates an average global GDP growth rate of 3.6% p.a. and a global population level of 11.2 billion people in 2100. Mean global temperate in 2100 will be \(1.77\,{^{\circ }}\hbox {C}\) higher than in 1995. These results are probably too optimistic. Sensitivity analyses show how these outcomes depend on various parameters. If values respond to environmental conditions only, global warming would reach \(2.5\,{^{\circ }}\hbox {C}\) and a lower impact of investment in carbon efficiency could lead to average temperature increase by \(4.8\,{^{\circ }}\hbox {C}\). The model is a novel conceptual framework that can be extended in many dimensions.  相似文献   

16.
Recently, Zhong et al. (Phys Rev A 87:022337, 2013) investigated the dynamics of quantum Fisher information (QFI) in the presence of decoherence. We here reform their results and propose two schemes to enhance and preserve the QFIs for a qubit system subjected to a decoherence noisy environment by applying \({non\text {-}Hermitian}\) operator process either before or after the amplitude damping noise. Resorting to the Bloch sphere representation, we derive the exact analytical expressions of the QFIs with respect to the amplitude parameter \(\theta \) and the phase parameter \(\phi \), and in detail investigate the influence of \({non\text {-}Hermitian}\) operator parameters on the QFIs. Compared with pure decoherence process (without non-Hermitian operator process), we find that the \({post non\text {-}Hermitian}\) operator process can potentially enhance and preserve the QFIs by choosing appropriate \({non\text {-}Hermitian}\) operator parameters, while with the help of the \({prior non\text {-}Hermitian}\) operator process one could completely eliminate the effect of decoherence to improve the parameters estimation. Finally, a generalized non-Hermitian operator parameters effect on the parameters estimation is also discussed.  相似文献   

17.
Subspace clustering methods partition the data that lie in or close to a union of subspaces in accordance with the subspace structure. Such methods with sparsity prior, such as sparse subspace clustering (SSC) (Elhamifar and Vidal in IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781, 2013) with the sparsity induced by the \(\ell ^{1}\)-norm, are demonstrated to be effective in subspace clustering. Most of those methods require certain assumptions, e.g. independence or disjointness, on the subspaces. However, these assumptions are not guaranteed to hold in practice and they limit the application of existing sparse subspace clustering methods. In this paper, we propose \(\ell ^{0}\)-induced sparse subspace clustering (\(\ell ^{0}\)-SSC). In contrast to the required assumptions, such as independence or disjointness, on subspaces for most existing sparse subspace clustering methods, we prove that \(\ell ^{0}\)-SSC guarantees the subspace-sparse representation, a key element in subspace clustering, for arbitrary distinct underlying subspaces almost surely under the mild i.i.d. assumption on the data generation. We also present the “no free lunch” theorem which shows that obtaining the subspace representation under our general assumptions can not be much computationally cheaper than solving the corresponding \(\ell ^{0}\) sparse representation problem of \(\ell ^{0}\)-SSC. A novel approximate algorithm named Approximate \(\ell ^{0}\)-SSC (A\(\ell ^{0}\)-SSC) is developed which employs proximal gradient descent to obtain a sub-optimal solution to the optimization problem of \(\ell ^{0}\)-SSC with theoretical guarantee. The sub-optimal solution is used to build a sparse similarity matrix upon which spectral clustering is performed for the final clustering results. Extensive experimental results on various data sets demonstrate the superiority of A\(\ell ^{0}\)-SSC compared to other competing clustering methods. Furthermore, we extend \(\ell ^{0}\)-SSC to semi-supervised learning by performing label propagation on the sparse similarity matrix learnt by A\(\ell ^{0}\)-SSC and demonstrate the effectiveness of the resultant semi-supervised learning method termed \(\ell ^{0}\)-sparse subspace label propagation (\(\ell ^{0}\)-SSLP).  相似文献   

18.
In this paper, two families of non-narrow-sense (NNS) BCH codes of lengths \(n=\frac{q^{2m}-1}{q^2-1}\) and \(n=\frac{q^{2m}-1}{q+1}\) (\(m\ge 3)\) over the finite field \(\mathbf {F}_{q^2}\) are studied. The maximum designed distances \(\delta ^\mathrm{new}_\mathrm{max}\) of these dual-containing BCH codes are determined by a careful analysis of properties of the cyclotomic cosets. NNS BCH codes which achieve these maximum designed distances are presented, and a sequence of nested NNS BCH codes that contain these BCH codes with maximum designed distances are constructed and their parameters are computed. Consequently, new nonbinary quantum BCH codes are derived from these NNS BCH codes. The new quantum codes presented here include many classes of good quantum codes, which have parameters better than those constructed from narrow-sense BCH codes, negacyclic and constacyclic BCH codes in the literature.  相似文献   

19.
We study the unextendible maximally entangled bases (UMEB) in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\) and connect the problem to the partial Hadamard matrices. We show that for a given special UMEB in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\), there is a partial Hadamard matrix which cannot be extended to a Hadamard matrix in \(\mathbb {C}^{d}\). As a corollary, any \((d-1)\times d\) partial Hadamard matrix can be extended to a Hadamard matrix, which answers a conjecture about \(d=5\). We obtain that for any d there is a UMEB except for \(d=p\ \text {or}\ 2p\), where \(p\equiv 3\mod 4\) and p is a prime. The existence of different kinds of constructions of UMEBs in \(\mathbb {C}^{nd}\bigotimes \mathbb {C}^{nd}\) for any \(n\in \mathbb {N}\) and \(d=3\times 5 \times 7\) is also discussed.  相似文献   

20.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号