首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the design and fabrication of a silicon micro gearing system (MGS) that utilizes electrostatic comb-drive actuators to rotate a gear ring through a ratchet mechanism. The rotational comb-drive actuator is engaged with the gear ring through a spring system and ratchet teeth at one end, reciprocally rotates around an elastic point at the other end based on the electrostatic force. Rotational motion and torque from the driving gear ring are transmitted smoothly to driven gears through involute-shaped gear teeth. Smart design of anti-gap structures helps to overcome the unavoidable gap problem occurred in deep reactive ion etching (deep-RIE) process of silicon. The MGS has been fabricated and tested successfully by using SOI (silicon-on-insulator) wafer and one mask only. The angular velocity of the gear ring is proportional to the driving frequency up to 40 Hz.  相似文献   

2.
Deep reactive ion etching (DRIE) process is specially invented for bulk micromachining fabrication with the objective of realizing high aspect ratio microstructures. However, various tolerances, such as slanted etched profile, uneven deep beams and undercut, cannot be avoided during the fabrication process. In this paper, the origins of various fabrication tolerances together with its effects on the performances of lateral comb-drive actuator, in terms of electrostatic force, mechanical stiffness, stability and displacement, are discussed. It shows that comb finger with positive slope generates larger electrostatic force. The mechanical stiffness along lateral direction increases when the folded beam slants negatively. The displacement is 4.832 times larger if the comb finger and folded beam are tapered to +1° and −1°, respectively. The uneven deep fingers generate an abrupt force and displacement when the motion distance reaches the initial overlap length. The undercut reduces both the driving force and the mechanical stiffness of the lateral comb-drive actuator. The fabricated comb-drive actuator, with comb finger of +1° profile and 0.025 μm undercut, and folded beam of −1° slope and 0.075 μm undercut, is measured and compared with the models where both show consistent results. These analytical results can be used to compensate the fabrication tolerances at design stage and allow the actuators to provide more predictable performance.  相似文献   

3.
Cai  Chunhua  Qin  Ming 《Microsystem Technologies》2017,23(7):2727-2738

A bulk silicon comb-drive actuator with low driving voltage and large displacement is presented in this paper. The bulk silicon comb-drive actuator is fabricated by a simple bulk micromachining process based on the low temperature Au–Au bonding technology. A cascade folded beam is designed to improve the displacement of comb-drive actuator at low driving voltages. The instability of the whole system decreases by utilizing unequal wide comb fingers design. The fringing capacitance and the fabrication tolerances together with their effects on the performances of the comb-drive actuators are also discussed. The measurement results show that the capacitance change rate and the displacement change rate of the comb-drive actuator are 1.5 fF/V2 and 0.125 μm/V2, respectively. The displacement of the actuator can reach 28.5 μm at 15 V driving voltages. The experimental results of the comb-drive actuator are in good agreement with the modified theoretical predictions.

  相似文献   

4.
Making submicron interelectrode gaps is the key to reducing the driving voltage of a micro comb-drive electrostatic actuator. Two new fabrication technologies, oxidation machining and a post-release positioning method, are proposed to realize submicron gaps. Two types of actuator (a resonant type and a nonresonant type) with submicron gaps were successfully fabricated and their operational characteristics were tested experimentally. The drive voltage was found to be lower than that of existing actuators. The stability of comb-drive actuators is discussed  相似文献   

5.
This paper presents a generalized model that describes the behavior of micromachined electrostatic actuators in conducting liquids and provides a guideline for designing electrostatic actuators to operate in aqueous electrolytes such as biological media. The model predicts static actuator displacement as a function of device parameters and applied frequency and potential for the typical case of negligible double-layer impedance and dynamic response. Model results are compared to the experimentally measured displacement of electrostatic comb-drive and parallel-plate actuators and exhibit good qualitative agreement with experimental observations. The model is applied to show that the pull-in instability of a parallel-plate actuator is frequency dependent near the critical frequency for actuation and can be eliminated for any actuator design by tuning the applied frequency. In addition, the model is applied to establish a frequency-dependent theoretical upper bound on the voltage that can be applied across passivated electrodes without electrolysis.  相似文献   

6.
We present an all-aluminum MEMS process (Al-MEMS) for the fabrication of large-gap electrostatic actuators with process steps that are compatible with the future use of underlying, pre-fabricated CMOS control circuitry. The process is purely additive above the substrate as opposed to processes that depend on etching pits into the silicon, and thereby permits a high degree of design freedom. Multilayer aluminum metallization is used with organic sacrificial layers to build up the actuator structures. Oxygen-based dry etching is used to remove the sacrificial layers. While this approach has been previously used by other investigators to fabricate optical modulators and displays, the specific process presented herein has been optimized for driving mechanical actuators with relatively large travels. The process is also intended to provide flexibility for design and future enhancements. For example, the gap height between the actuator and the underlying electrode(s) can be set using an adjustable polyimide sacrificial layer and aluminum “post” deposition step. Several Al-MEMS electrostatic structures designed for use as mechanical actuators are presented as well as some measured actuation characteristics  相似文献   

7.
The purpose of this paper is based on micro fabrication technology, while integrating planar waveguide technology and the scattering phenomenon generated by electro-statically actuator thin film, to develop a 2-dimensional display technology capable of being cleared and re-displayed. For thin film displacement, the restoration of inward elasticity needs to be overcome. During thin film displacement, attraction due to suction occurs when coming into contact with light waveguide; electrostatic force and elastic force are restored and mutually balanced, causing display to light up. On the other hand, when input voltage is released, electrostatic force stops and thin film is restored to original position, causing display to darken. The design structure uses SU-8 as supporting posts, and PDMS as the electrostatic thin film suspended above the glass substrate (light waveguide). The experimental results show that a waveguide with an electrode length of 250 μm (sub-pixel length), a micro-post height of 27 μm, and a PDMS film thickness of 16 μm requires an actuator voltage of 314 V; and a micro-post height of 27 μm, and a PDMS film thickness of 8 μm requires an actuator voltage of 189 V. Thus, with an arrayed micro-electrode design, electronic paper and panels with large color display area could be manufactured.  相似文献   

8.
A novel method for fabricating a self-aligned electrostatic dual comb drive using a multi-layer SOI process is developed. The present method utilizes four aligned masks, greatly simplify the existing SOI-MEMS fabrication methods in manufacturing optical MEMS devices. Here, the actuating structure consists of fixed combs and moving combs that are composed of single crystal silicon, nitride and polysilicon. One mask is used to provide a deep etching to etch polysilicon, nitride and single crystal silicon respectively. The nitride separates polysilicon and single crystal silicon and provides an additional dielectric for the purpose of producing bi- directional motion upon applying electrostatic forces. A dual comb drive actuator with optical structures was fabricated with the developed process. The actuator is capable of motion 250 nm downward and 480 nm upward with 30 V applied voltage at 4 kHz frequency. The dynamic characteristics of the first and the second resonant frequency of the dual comb-drive actuator are 10.5 kHz and 23 kHz respectively. Experimental results indicated that the measured data agreed well with simulation results using the ANSOFT Maxwell® 2D field simulator, ANSYS® and Coventor Ware®.  相似文献   

9.

This paper presents a design of a comb finger shape and calculation of a trapezoidal-shaped electrostatic comb-drive actuator (TECA) in order to aim a higher electrostatic force density and larger displacement in comparison with the typical rectangular-shaped electrostatic comb-drive actuator (RECA). Relation between a beam’s stiffness and a driving voltage has been examined to predict a pull-in effect occurring in TECA. Micro fabrication and characterization of TECA and RECA systems are performed by using a standard SOI-MEMS technology. Theoretical and experimental results confirm the strong points of TECA’s structure (similar to the dimensions of RECA) such as a larger number of movable comb finger arrayed at the same length and larger displacement. At driving voltages of 47.9 and 50 (V), the calculation and measurement displacement of TECA are approximately 2.2 and 1.78 times larger than that of RECA, respectively.

  相似文献   

10.
Frequency-dependent electrostatic actuation in microfluidic MEMS   总被引:1,自引:0,他引:1  
Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in "dry" MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.  相似文献   

11.
This paper reports on fabrication and characterization of a new electrostatic microactuator that achieves out-of-plane multi-axis motion with a single silicon device layer. The multi-axis motion with the simple actuator design is possible by incorporating a three-dimensional (3-D) polydimethylsiloxane (PDMS) microstructure. This paper develops a new device processing method named "Soft-Lithographic Lift-Off and Grafting (SLLOG)" to fabricate the previously designed PDMS-on-silicon hybrid actuator structure. SLLOG is a low-temperature (less than 150/spl deg/C) process that allows replica molded PDMS microstructures to be integrated in silicon micromachined device patterns. The fabricated actuator is characterized using laser vibrometry. The experimental results demonstrate actuation motions achieved in three independent axes with fast dynamic response reaching a bandwidth of about 5 kHz. The fabricated PDMS-on-silicon actuator yields a vertical displacement up to 5 /spl mu/m and rotational motions with a 0.6-/spl deg/ tilting angle at a 40-V peak-to-peak ac actuation voltage.  相似文献   

12.
We report microfabrication of high aspect ratio comb-drive using deep X-ray lithography at Indus-2 synchrotron radiation source. Analysis shows that the comb-drive actuator of aspect ratio 32 will produce nearly 2.5 μm displacement when 100 V DC is applied. The displacement increases as the gap between the comb finger decreases. For fabrication of comb-drive, polyimide–gold X-ray mask using UV lithography is made for the first time in India. To pattern on an 800 μm thick X-ray photoresist (PMMA) exposures are performed using our deep X-ray lithography beamline (BL-07) at Indus-2. Metallization on the selective regions of the developed X-ray photoresist with comb-drive pattern was carried out by RF sputtering. Following this the comb-drive actuator of PMMA was fabricated by one-step X-ray lithography. The comb-drive can also be used as a sensor, energy harvester, resonator and filter.  相似文献   

13.
This study presents the design and fabrication of a novel piezoelectric actuator for a micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have five major components, namely a piezoelectric actuator, a stainless steel chamber layer with membrane, two stainless steel channel layers with two valve seats, and a nickel check valve layer with two bridge-type check valves. A prototype of the micropump, with a size of 10 × 10 × 1.0 mm, is fabricated by precise manufacturing. The check valve layer was fabricated by nickel electroforming process on a stainless steel substrate. The chamber and the channel layer were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The experimental results demonstrate that the flow rate of micropump accurately controlled by regulating the operating frequency and voltage. The flow rate of 1.82 ml/min and back pressure of 32 kPa are obtained when the micropump is driven with alternating sine-wave voltage of 120 Vpp at 160 Hz. The micropump proposed in this study provides a valuable contribution to the ongoing development of microfluidic systems.  相似文献   

14.
Lithographie Galvanoformung Abformung (LIGA) is a promising approach for fabrication of high aspect ratio 3D microactuator for dual-stage slider in hard disk drive. However, this approach involves practically challenging X-ray lithography and structural transfer processes. In this work, electrostatic MEMS actuator is developed based on a LIGA approach with cost-effective X-ray lithography and dry-film-transfer-to-PCB process. X-ray lithography is performed with X-ray mask based on lift-off sputtered Pb film on mylar substrate and photoresist application using casting-polishing method. High quality and high aspect ratio SU8 microstructures with inverted microactuator pattern have been achieved with the interdigit spacing of ~5 μm, vertical sidewall and a high aspect ratio of 29 by X-ray lithography using the low-cost Pb based X-ray mask. A new dry-film-transfer-to-PCB is employed by using low-cost dry film photoresist to transfer electroplated nickel from surface-treated chromium-coated glass substrate to printed circuit board (PCB) substrate. The dry film is subsequently released everywhere except anchor contacts of the electrostatic actuator structure. The fabricated actuator exhibits good actuation performance with high displacement at moderate operating voltage and suitably high resonance frequency. Therefore, the proposed fabrication process is a promising alternative to realize low-cost MEMS microactuator for industrial applications.  相似文献   

15.
A large-deformation and low-voltage micro actuator is proposed in this paper to overcome the problems of high voltage and undersized deformation of electrostatic micro actuator. The principle of the proposed actuator is based on vertical-horizontal bending. Dynamic equations of the micro actuator under axial and horizontal loading are built based on Lagrange–Maxwell electromechanical dynamics equations. In addition, the influences of thermal stress, axial electrostatic force and squeezing force are analyzed. Furthermore, the horizontal distributed load and axial load are equivalent to horizontal centralized load based on the Runge–Kutta algorithm and finite difference method. The relationships of deformation with driving voltage, regulation voltage, and axial compression quantity and temperature difference are achieved by simulation. Simulation results show that the deformation of the proposed actuator is as high as 10.861 μm when the driving voltage is 16 V. The deformation of proposed micro actuator is larger than that of the existing one. Finally, the simulation results are verified by experiment and agree well with experiment results.  相似文献   

16.
In this paper we present improvements in the field of batch fabricated micro grippers with shape memory alloy (SMA) actuators or pneumatic drives. In this context we illustrate two methods of structuring SMA foils. Moreover, it is shown how the processed SMA elements can be embedded into monolithic SU-8 grippers. We also describe actuator elements for silicon/SU-8 hybrid micro grippers. Furthermore, we report on the advantages of pneumatic micro grippers and how this alternative actuation principle can be fabricated in batch technology. In this regard, a thermoplastic adhesive electrodepositing process is presented.  相似文献   

17.
Design of large deflection electrostatic actuators   总被引:5,自引:0,他引:5  
Electrostatic, comb-drive actuators have been designed for applications requiring displacements of up to 150 /spl mu/m in less than 1 ms. A nonlinear model of the actuator relates the resonant frequency and the maximum stable deflection to the actuator dimensions. A suite of experiments that were carried out on deep reactive ion etched (DRIE), single-crystal silicon, comb-drive actuators confirm the validity of the model. Four actuator design improvements were implemented. First, a folded-flexure suspension consisting of two folded beams rather than four and a U-shaped shuttle allowed the actuator area to be cut in half without degrading its performance. Second, the comb teeth were designed with linearly increasing lengths to reduce side instability by a factor of two. Third, the folded-flexure suspensions were fabricated in an initially bent configuration, improving the suspension stiffness ratio and reducing side instability by an additional factor of 30. Finally, additional actuation range was achieved using a launch and capture actuation scheme in which the actuator was allowed to swing backward after full forward deflection; the shuttle was captured and held using the backs of the comb banks as high-force, parallel-plate actuators.  相似文献   

18.
Micro pumps are essential components of micro devices such as drug delivery systems. Large numbers of pumps have been proposed based on different actuating principles. Piezoelectric actuation offers advantages such as reliability and energy efficiency. Lead zirconate titanate (PZT) based piezoelectric actuation for micro pumps is predominantly explored despite its disadvantages such as brittle nature, low straining and difficulties in processing. Polymer piezoelectric materials like polyvinylidene fluoride (PVDF) could be promising replacements for PZT owing to their availability in form of films and good strain coefficients. Very limited literature on micro pump with PVDF as an actuator is available. In this paper, finite element analysis (FEA) model of a micro pump actuator using single and multilayer PVDF for actuation is developed in ANSYS?. The model takes into account the influence of driving voltage and actuator geometry. The central deflection of the pump diaphragm which is instrumental in defining the pump performance is studied for driving voltages of 100?C200?V. The deflection of the pump diaphragm for single layer and multilayer actuation are determined from the model. It could be inferred from the initial part of the study that pump performance depends on driving voltage and actuator film thickness. In order to reduce driving voltage requirement multilayer stacked actuator is tried with four different configurations of the layers. It is concluded that stacking configuration of parallel energized straight polarity PVDF layers yielded best central deflection. An attempt is made to compare the performance of multilayer actuator with an equivalent single thick layer actuator. It is noticed that the multilayer actuator performance was better by about 101% when number of layers is doubled.  相似文献   

19.
This paper describes the design, fabrication, and measurement of an electrically tunable film bulk acoustic resonator (FBAR) that is formed by integrating FBAR with an electrostatic microelectromechanical systems actuator. Around 1.47% tuning of the series resonant frequency ( Deltaf cong 22.5 MHz) at 1.5 GHz is experimentally obtained with an electrostatic actuation voltage of 7 V. This is the highest frequency tuning reported for FBAR operating at above 1 GHz without any extra power consumption. Two integration approaches of FBAR and air-gap capacitor are presented and compared, in terms of fabrication process and Q factor. The approach that minimizes any possible energy loss in the acoustic wave propagation path shows a quality factor (160-304) significantly higher than the one having a capacitor right on top surface of the FBAR's piezoelectric film. Furthermore, we have characterized the electrical tuning of FBAR through piezoelectric stiffening due to an applied DC electric field and report a linear frequency shift of about -8 ppm/V at 3.4 GHz.  相似文献   

20.
This paper presented a driving circuit which can output a driving waveform of the piezoelectric element impact-type actuator. The piezoelectric element impact-type actuator generates the rotational movement which is necessary to move the legs of the micro electro mechanical systems (MEMS) microrobot. The MEMS microrobot is made from silicon wafers fabricated by micro fabrication technology. The size of the fabricated MEMS microrobot is 4.0 mm × 4.6 mm × 3.6 mm. The driving circuit consists of a bare chip IC of the pulse-type hardware neuron model (P-HNM) and a peripheral circuit. P-HNM is an electrical oscillating model which has the same basic features of biological neurons. Therefore, P-HNM can output the driving waveform of the piezoelectric element impact-type actuator using electrical oscillation as biological neuron. As a result, we showed that the driving circuit can output the driving waveform of the piezoelectric element impact-type actuator without using any software programs or analog digital converters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号