首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
We have previously located the genes of the five human main type H1 genes and the gene encoding the testicular subtype H1t to the region 21.1 to 22.2 on the short arm of chromosome 6. To investigate the organization of the histone genes in this region, we isolated two YACs from a human YAC library by PCR screening with primers specific for histone H1.1. This screen revealed two YAC clones, YAC Y23 (corresponding to ICRFy901D1223) contains an insert of about 480 kb, whereas the smaller YAC 4A (corresponding to ICRFy900C104) spans about 340 kb and is completely covered by YAC Y23. We have subcloned the YAC inserts in cosmids, determined the linear orientation of the cosmids by cosmid walking, and constructed a restriction map of the entire region by mapping the individual cosmids using partial digests and hybridization with labeled oligonucleotides complementary to the cos site of the vector. Hybridization analysis, subcloning, restriction mapping, and sequencing revealed that most of the previously isolated phage and cosmid clones containing histone genes are part of this YAC including the clones containing the four human main type H1 histone genes H1.1 to H1.4, the H1t gene, and core histone genes. Thirty-five histone genes map within 260 kb of the YAC Y23 insert. All newly identified histone genes were sequenced, and the sequences were deposited with the EMBL nucleotide sequence database. The histone H1.5 gene is not part of this region, and we therefore conclude that the H1.5 gene and the associated core histone genes form a separate subcluster within this chromosomal region.  相似文献   

4.
5.
The sequences and organization of the histone genes in the histone gene cluster at the chromosomal marker D6S105 have been determined by analyzing the Centre d'Etude du Polymorphisme Humain yeast artificial chromosome (YAC) 964f1. The insert of the YAC was subcloned in cosmids. In the established contig of the histone-gene-containing cosmids, 16 histone genes and 2 pseudogenes were identified: one H1 gene (H1.5), five H2A genes, four H2B genes and one pseudogene of H2B, three H3 genes, and three H4 genes plus one H4 pseudogene. The cluster extends about 80 kb with a nonordered arrangement of the histone genes. The dinucleotide repeat polymorphic marker D6S105 was localized at the telomeric end of this histone gene cluster. Almost all human histone genes isolated until now have been localized within this histone gene cluster and within the previously described region of histone genes, about 2 Mb telomeric of the newly described cluster or in a small group of histone genes on chromosome 1. We therefore conclude that the data presented here complete the set of human histone genes. This now allows the general organization of the human histone gene complement to be outlined on the basis of a compilation of all known histone gene clusters and solitary histone genes.  相似文献   

6.
7.
8.
9.
10.
BACKGROUND: There is general agreement that large numbers of histone H1 are necessary for maintenance of the higher order structure of chromatin in higher eukaryotes. The chicken H1 gene family comprises six members per haploid genome, the total copy number being 12, and they encode six H1 variants which are considerably different from each other in amino acid sequence. We recently established that in two chicken DT40 mutants (1/2delta110kb and delta57kb), which lack, respectively, one allele of the gene cluster of 110 kb carrying six H1 genes, plus 33 core histone genes, and two copies each of four of the six H1 genes included in an approximately 57 kb segment of the cluster, expression of the remaining H1 genes is increased, resulting in constant steady-state levels of total H1 mRNAs. These results gave rise to the simple questions of how many H1 genes and how many H1 variants, at minimum, are necessary for the viability of DT40 cells. RESULTS: We generated two DT40 mutants, delta10/12H1 and delta11/12H1, which are devoid, respectively, of two copies each of five H1 genes, and those plus a single copy of the last H1 gene, in addition to 17 core histone genes. Analyses involving a RNase protection assay, SDS-PAGE and acid-urea-PAGE revealed, not only that in the delta10/12H1 mutant the steady-state levels of total H1 mRNAs and the amounts of histone H1 were not changed, but also that in the delta11/12H1 mutant both were approximately one-half the normal levels, and the amounts of HMG proteins were increased about twofold. No alteration in the growth rate or global chromatin structure was observed in either mutant. On the other hand, the protein patterns on 2D-PAGE of the delta11/12H1 mutant were definitely distinct from those of the wild-type cell line. CONCLUSION: These results indicate not only that a lack of five of the six H1 variants causes changes in the protein patterns, but also that only a single copy of the H1 genes is enough for cell proliferation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
There are six mouse histone H1 genes present in the histone gene cluster on mouse chromosome 13. These genes encode five histone H1 variants expressed in somatic cells, H1a to H1e, and the testis-specific H1t histone. Two of the genes that have not been assigned previously to the five somatic H1 subtypes have been identified as encoding the H1b and H1d subtypes. Three of the H1 genes, H1a, H1c and H1t, are present on an 80 kb segment of DNA that contains nine core histone genes. Two others, H1d and H1e, are present in a second patch, while the H1b gene is at least 500 kb away in a patch containing 14 core histone genes. The histone H1 genes are differentially expressed. All five genes for the somatic histone H1 proteins are expressed in exponentially growing cells. However, the levels of H1a, H1b and H1d mRNAs are greatly reduced in cells that are terminally differentiated or arrested in G0, while the H1c and H1e mRNAs continue to be expressed. In addition to the major RNA that ends at the stem-loop, the H1c gene expresses a longer, polyadenylated mRNA in differentiated cells, although in varying amounts. None of the other histone H1 genes encodes detectable amounts of polyadenylated mRNAs.  相似文献   

19.
20.
Recombinant baculoviruses can serve as gene-transfer vehicles for transient expression of recombinant proteins in a wide range of mammalian cell types. Furthermore, by inclusion of a dominant selectable marker in the viral vector, cell lines can be derived that stably express recombinant genes. A virus was constructed containing two expression cassettes controlled by constitutive mammalian promoters: the cytomegalovirus immediate early promoter/enhancer directing expression of green fluorescent protein and the simian virus 40 (SV40) early promoter controlling neomycin phosphotransferase II. Using this virus, efficient gene delivery and expression was observed and measured in numerous cell types of human, primate, and rodent origin. In addition to commonly used transformed cell lines such as HeLa, CHO, Cos-7, and 293, this list includes primary human keratinocytes and bone marrow fibroblasts. In all cases, addition of butyrate or trichostatin A (a selective histone deacetylase inhibitor) to transduced cells markedly enhanced the levels of reporter protein expression observed. When transduced cells are put under selection with the antibiotic G418, cell lines can be obtained at high frequency that stably maintain the expression cassettes of the vector DNA and exhibit stable, high-level expression of the reporter gene. Stably transduced derivatives have been selected from a substantial number of different cell types, suggesting that stable lines can be derived from any cell type that exhibits transient expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号