首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A four-point bend test was used to determine the fracture toughness of mechanical grade and di-electric (optical) grade chemical vapour deposited (CVD) diamond. The validity of the test was first confirmed by measuring the toughness of alumina and confirming the results with literature values. The toughnesses of both types of CVD were similar; 8.5 ± 1.0 and 8.3 ± 0.4 MPa respectively. This is higher than the value of 3 4 ± 0 5 MPa measured for good quality natural diamond by Field and Freeman, [1] using an indentation technique. It is suggested that this is primarily due to differences in surface roughness. There were enough samples to make a preliminary study of the effect of temperature and these data are reported.  相似文献   

2.
3.
In this work, the effect of a diamond nucleation process on freestanding aluminium nitride (AlN)/diamond surface acoustic wave (SAW) device performances was studied. Before diamond deposition, silicon (Si) substrates have been mechanically nucleated, using an ultrasonic vibration table with submicron diamond slurry, and bias-enhanced nucleated (BEN). Freestanding diamond layers obtained on mechanically scratched Si substrates exhibit a surface roughness of R(MS) = 13 nm, whereas very low surface roughness (as low as R(MS) < or = 1 nm) can be achieved on a freestanding BEN diamond layer. Propagation losses have been measured as a function of the operating frequency for the two nucleation techniques. Dispersion curves of phase velocities and electromechanical coupling coefficient (K2) were determined experimentally and by calculation as a function of normalized thickness AlN film (kh(AlN) = 2pi h(AlN)/lambda). Experimental results show that the propagation losses strongly depend on the nucleation technique, and that these losses are weakly increased with frequency when the BEN technique is used.  相似文献   

4.
A step heating method for the measurement of the thermal diffusivity of diamond thin film is described. The step heating method is a transient heat flow method. Transient temperature profiles are generated in a strip-shaped sample by heating one end of the sample while the other end is clamped to a heat sink. Three thermocouples are used along the heat path. The results are compared with the literature values over the temperature range from –190 to 50°C.  相似文献   

5.
为了解决化学气相沉积金刚石膜产业化进程中存在的生长速率慢、沉积尺寸小的难题,自行研制了适宜于大尺寸金刚石膜高速生长的电子辅助热灯丝式化学气相沉积(EAHFCVD)装置,通过反应气体中加氧将碳源浓度提高到10%以上,并优化反应压力与直流偏流密度二参数间的匹配,研究了该装置的生产特性,同时利用SEM、XRD和Raman光谱对沉积的金刚石膜进行了分析表征.研究结果表明,应用该装置高质量金刚石膜的沉积尺寸可达100mm以上,生长速率达到约10μm/h的水平,并制备出100mm×1 5mm的完整金刚石自支撑膜片,该技术可满足产业化生产的要求.  相似文献   

6.
7.
A method of nondestructive evaluation (NDE) by measuring the acoustic properties of materials using a surface-acoustic-wave (SAW) delay line is presented. A SAW delay line with three interdigital transducers (IDTs) deposited on a piezoelectric substrate is used to measure the SAW velocity of the sample material, using a fluid couplant. The SAW velocity is obtained from the frequency dependence of the delay line, and movement in the z-direction is not required. Measurements have been made for an anisotropic material at frequencies from 35 to 55 MHz. The experimental results agree well with the theoretical results. Moreover, it has been found that the focused SAW excited from a Fresnel-phase-plate IDT is suitable for mapping the two-dimensional variation of SAW velocity on an anisotropic sample surface.  相似文献   

8.
安晓明  郭辉  孙振路  姜龙  吴晓波 《真空》2012,49(4):47-50
采用光学显微镜在透射光、反射光和侧光模式下研究了多晶CVD金刚石厚膜中黑色缺陷的存在形式,利用X射线光电子能谱、拉曼光谱研究了黑色缺陷的组成成分。结果表明:晶界处的裂隙或者孔洞和晶粒内部的结晶缺陷是金刚石膜内部黑色缺陷的存在形式之一。  相似文献   

9.
报道了化学气相沉积金刚石薄膜生长的原位反射率测量,提出了监控金刚石薄膜生长的激光反射多光束干涉的数学模型。通过原位反射率的测量,精确监控了金刚石薄膜的生长厚度,成功地制备了红外增透增,这种方法的测量装置简单、紧凑而且可靠。  相似文献   

10.
L. Constant 《Thin solid films》2008,516(5):691-695
This paper reports on the kinetics of diamond nucleation and growth on polycrystalline copper investigated by in situ Auger Electron Spectroscopy and Scanning Electron Microscopy. Copper is a reference substrate to study the diamond nucleation from graphite. The substrate is first treated with diamond paste. However the diamond seeds let on the surface by the pre-treatment are almost completely transformed into graphite. The nucleation of CVD diamond can be well described in the framework of carbon phase transformations. Diamond seeds deposited on the substrate are first transformed into graphitic layers. A process occurring on the edges site of graphite is subsequently postulated, in agreement with the Lambrecht model.  相似文献   

11.
12.
Although natural diamond is a complete chemically-inert material for a wide range of aggressive environments, its comparative scarcity and problems for coating design have hampered its utility as a corrosion protective coating. The recent discovery and development of chemical vapour deposition methods for growing diamond crystals and polycrystalline diamond films has opened up a wide range of applications thanks to their excellent tribological, electronic and optical properties. Various applications are in progress for corrosion and combined wear and corrosion protection. This paper presents the first study of the corrosion behaviour of continuous polycrystalline diamond films using electrochemical impedance electroscopy. Diamond films have been deposited on molybdenum substrates by means of the acetylene flame combustion method (FCVD). Electrochemical behaviour has been studied in a 0.6 M NaCl solution, it being seen that despite the inert character and apparent continuity of the film, there are areas of the base material which are exposed to the electrolyte. This behaviour has been modelled by means of an equivalent circuit which allows for the corroboration of the proposed mechanism.  相似文献   

13.
We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.  相似文献   

14.
Abstract

We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.  相似文献   

15.
In this paper, a hybrid method, which combines the traditional concept of guided waves and the finite element method (FEM), is proposed to analyze the spurious modes of aluminum nitride (AIN) film with electrodes. First, the guided wave modes in the plated area are obtained by 1-D FEM. Second, a mode-match method is used to satisfy the boundary conditions. The vibration of the film resonator is a superposition of all of the guided modes. With respect to an A1N film resonator, which is a thickness-stretch mode resonator, we have identified three families of spurious modes: extension, thickness-stretch, and thickness-shear. The spectrum of spurious modes is calculated and the influence of the spurious modes is discussed.  相似文献   

16.
Surface acoustic wave (SAW) filter properties of ZnO/diamond/Si structures are calculated including velocity dispersion. The conventional SAW device modeling has previously been developed for bulk substrates. However, layered materials exhibit SAW velocity dispersion. The null frequency bandwidth of typical layered ZnO/diamond/Si structures is narrower than that calculated by conventional SAW device modeling techniques due to the velocity dispersion of the layered structures. The null frequency bandwidth of layered structures was calculated by the delta function model and the equivalent circuit model, including velocity dispersion, and compared with the experimental results. The dispersive equivalent circuit (DEC) model for layered structures is also presented. The results of these analysis are compared with the experimental results which show very good agreement.  相似文献   

17.
围绕纳米金刚石膜生长的二次形核理论,利用直流热阴极PCVD技术,在微晶金刚石膜连续生长模式常用的一些生长条件下,通过改变工作气压,改变生长温度,同时采取人工干预间歇生长模式进行金刚石膜生长实验,探索纳米级金刚石膜制备的新途径.实验表明:在金刚石膜生成的过程中,降低工作气压或生长温度,可使等离子体激励能量减弱,导致二次形核基团比例增加,成为人工干预二次形核的内在诱因;通过调节激励电压,使等离子体能量状况改变,有利于二次形核行为的引导,成为人工干预二次形核的外在诱因,在此内外因素共同作用下,可以实现二次形核现象的有效诱导,制备出纳米金刚石膜.人工干预诱导二次形核技术制备纳米金刚石膜的实现,使纳米金刚石膜制作方法得到了扩展,也拓宽了直流热阴极PCVD技术的应用范围.  相似文献   

18.
The propagation of shear-horizontal waves in a piezoelectric film of aluminum nitride on a silicon substrate is studied. Three different electrode configurations are considered for thin film acoustic wave resonator application. A theoretical analysis is performed. The equations of linear piezoelectricity and anisotropic elasticity are used for the film and the substrate, respectively. Real and imaginary dispersion curves as well as electromechanical mode shapes are obtained. The effects of electrode configuration on the distribution of the electromechanical fields and the dispersion curves of long thickness-twist waves as well as energy trapping are examined.  相似文献   

19.
Boron nitride nanosheets (BNNSs) protruding from boron nitride (BN) films were synthesized on silicon substrates by chemical vapor deposition technique from a gas mixture of BCl3–NH3–H2–N2. Parts of the as-grown nanosheets were vertically aligned on the BN films. The morphology and structure of the synthesized BNNSs were characterized by scanning electron microscopy, transmission electron microscopy, and Fourier transformation infrared spectroscopy. The chemical composition was studied by energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Cathodoluminescence spectra revealed that the product emitted strong UV light with a broad band ranging from 250 to 400 nm. Field-emission characteristic of the product shows a low turn-on field of 6.5 V μm?1.  相似文献   

20.
Diamond and diamond-like carbon have properties which in principle make them ideally suited to a wide variety of thin-film applications. The widespread use of diamond thin films, however, has been limited for a number of reasons related largely to the lack of understanding and control of the nucleation and growth processes. Real-time, in-situ studies of the surface of the growing diamond film are experimentally difficult because these films are normally grown under a relatively high pressure of hydrogen, and conventional surface analytical methods require an ultrahigh vacuum environment. Pulsed ion beam based analytical methods with differentially pumped ion sources and particle detectors are able to characterize the uppermost atomic layer of a film during growth at ambient pressures in the range 0.7–27 Pa (4–6 orders of magnitude higher than other surface-specific analytical methods). We describe here a system which has been developed for the purpose of determining the hydrogen concentration and bonding sites on diamond surfaces as a function of sample temperature and ambient hydrogen pressure under hot-filament chemical vapor deposition (CVD) growth conditions. It is demonstrated that as the hydrogen partial pressure increases the saturation hydrogen coverage of the surface of a CVD diamond film increases, but that the saturation level depends on the atomic hydrogen concentration and substrate temperature. At the highest temperatures studied (700 °C), it was found that the surface hydrogen concentration did not exceed 1/4 monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号