共查询到14条相似文献,搜索用时 62 毫秒
1.
语义社会网络是一种由信息节点及社会关系构成的新型复杂网络,传统语义社会网络分析算法在进行社区挖掘时需要预先设定社区个数,且无法发现重叠社区.针对这一问题,提出一种面向语义社区发现的link-block算法.该算法首先以LDA模型为语义信息模型,创新性地建立了以link为核心的block区域LBT(link-block-topic)取样模型;其次,根据link-block语义分析结果,建立可度量link-block区域的语义链接权重方法,实现了语义信息的可度量化;最后,根据语义链接权重建立了以link-block为单位的聚类算法以及可评价语义社区的SQ模型,并通过实验分析,验证了该算法及SQ模型的有效性及可行性. 相似文献
2.
一种面向语义重叠社区发现的 Block 场取样算法 总被引:1,自引:1,他引:1
语义社会网络(Semantic social network, SSN)是一种包含信息节点及社会关系构成的新型复杂网络. 传统语义社会网络分析算法在进行社区挖掘时, 需要预先设定社区个数且无法发现重叠社区. 针对这一问题, 提出一种面向语义重叠社区发现的block场采样算法, 该算法首先以LDA (Latent dirichlet allocation)模型为语义分析模型, 建立了以取样节点为核心节点的block 场BAT (Block-author-topic)模型; 其次, 根据节点的语义分析结果, 建立可度量block区域的语义凝聚力方法, 实现了语义信息的可度量化; 最后, 以节点的语义凝聚力为输入, 改进了重叠社区发现的标签传播算法(Label propagation algorithm, LPA)及可评价语义社区的SQ度量模型, 并通过实验分析, 验证了本文算法及SQ 度量模型的有效性及可行性. 相似文献
3.
针对COPRA算法因在标签更新过程采用随机策略而导致的重叠社区划分结果不稳定问题,本文对COPRA算法进行了改进,提出了一种简单的重叠社区发现算法.该算法仍采用同步的方式传播标签,但只在以边缘节点为中心的桥梁节点群内进行标签传播,以此提升发现重叠社区的速度.该算法还引入了节点连接社区强度,利用其降低标签更新过程中的随机... 相似文献
4.
基于局部语义聚类的语义重叠社区发现算法 总被引:2,自引:0,他引:2
语义社会网络是一种包含信息节点及社会关系构成的新型复杂网络,因此以节点邻接关系为挖掘对象的传统社会网络社区发现算法无法有效处理语义社会网络重叠社区发现问题.针对这一问题,提出基于局部语义聚类的语义社会网络重叠社区发现算法,该算法:1)以LDA(latent Dirichlet allocation)模型为语义信息模型,利用Gibbs取样法建立节点语义信息到语义空间的量化映射;2)以节点间语义坐标的相对熵作为节点语义相似度的度量,建立节点相似度矩阵;3)根据社会网络的局部小世界特性,提出语义社会网络的局部社区结构S-fitness模型,并根据S-fitness模型建立了局部语义聚类算法(local semantic clusterm, LSC);4)提出可度量语义社区发现结果的语义模块度模型,并通过实验分析,验证了算法及语义模块度模型的有效性及可行性. 相似文献
5.
语义社会网络是由信息节点及社会关系构成的一类新型复杂网络,因此语义社会网络重叠社区发现是传统社区发现研究的新方向.针对这一问题,提出基于随机游走的语义社会网络重叠社区发现算法,该算法首先以LDA(latent Dirichlet allocation)算法为基础建立语义空间,实现节点语义信息到语义空间的量化映射;其次,以语义空间中节点信息熵作为节点语义信息比重,以节点的度分布比率作为节点关系比重,建立节点语义影响力模型及语义社会网络的加权邻接矩阵;再次,以语义影响力模型和加权邻接矩阵为参数,提出一种改进的语义社会网络重叠社区发现的随机游走策略,并提出可度量语义社区发现结果的语义模块度模型;最后,通过实验分析,验证了所提出的算法及语义模块度模型的有效性和可行性. 相似文献
6.
说话者-侦听器标签传播算法(Speaker-Listener Label Propagation Algorithm,SLPA)以标签传播算法为基础,通过Speaker和Listener互动的动态过程来发现网络中的重叠社团,时间复杂度近似线性,但在标签传播过程中存在随机性,并且在应用到大规模网络时节点标签初始化需耗费大量的资源。针对以上问题,通过改进SLPA设计了一种基于标签传播的重叠社团发现算法(Overlapping Community Division Algorithm Based on Label Propagation,LP-OCD)。该算法在每个节点存储器初始化标签之前,利用K-Shell分解算法对网络进行预处理,去除边缘层节点;在标签更新阶段,通过改进Speaking和Listening策略来降低算法的随机性;后处理阶段边缘层节点的标签由其邻居节点信息决定。实验结果表明,LP-OCD算法不仅具有近似线性的时间复杂度,而且显著提高了所发现重叠社团的质量。 相似文献
7.
针对多标签传播重叠社区发现算法(COPRA)存在的社区划分结果准确性低和鲁棒性差的问题,提出一种基于成对约束的多标签传播重叠社区发现方法 (PCMLPA)。以主动查找、扩展的方式引入成对约束指导社区发现,提高社区划分结果的准确性。在标签传播的过程中,根据节点影响力大小确定节点更新顺序,根据节点的相似性度量确定邻居节点的遍历顺序,解决COPRA鲁棒性差的问题。与其它基准算法的对比实验结果表明,PCMLPA方法鲁棒性强且社区划分结果具有更高的准确性。 相似文献
8.
9.
基于标签传播的思想,提出一种新的重叠社区检测算法SLPA-TD(Speaker-listener Label Propagation Algorithm-Time Decay),针对现有标签传播算法更新标签的随机性造成的结果不稳定问题,引入节点的影响力排序;设计一种新的标签传播的Speaker-Listener规则,引入衰减因子λ表示历史标签影响随时间衰减的程度,综合节点属性和邻域结构信息进行标签选择,提高社区检测的准确性。分别在基准网络和真实数据集上进行实验,结果表明该算法有效提高了检测结果的稳定性和准确性。 相似文献
10.
标签传播算法是一种被广泛应用的社区发现算法,该算法为网络中的每个节点分配一个初始标签,然后通过传播标签来发现复杂网络中的潜在社区,具有时间复杂度低的特点。当前基于标签传播的重叠社区发现算法存在忽略节点重要性差异、需要人为设置参数等不足。针对该类算法在重叠社区发现方面的缺陷,提出一种基于多标签传播的重叠社区发现优化算法。该算法使用K-核分解方法找出若干个社区核心节点,以这些节点为种子节点,逐层向外传播标签;在进行标签选择的时候以邻居节点标签的种类来决定重叠节点的标签个数。实验表明,该算法明显改善了社区发现的性能,提高了划分结果的稳定性和准确性。 相似文献
11.
12.
LinkLPA: A Link‐Based Label Propagation Algorithm for Overlapping Community Detection in Networks 下载免费PDF全文
Heli Sun Jiao Liu Jianbin Huang Guangtao Wang Xiaolin Jia Qinbao Song 《Computational Intelligence》2017,33(2):308-331
Community detection is an important methodology for understanding the intrinsic structure and function of complex networks. Because overlapping community is one of the characteristics of real‐world networks and should be considered for community detection, in this article, we propose an algorithm, called link‐based label propagation algorithm (LinkLPA), to detect overlapping communities. Because the link partition is conceptually natural for the problem of overlapping community detection, LinkLPA first transforms node partition problem into link partition problem and employs a new label propagation algorithm with preference on links instead of nodes to detect communities due to the simplicity and efficiency of label propagation algorithm. Then the proposed LinkLPA performs a postprocessing to refine the detected overlapping communities by avoiding over‐overlapping and incorrect partition of weak ties. Experimental results on a large number of real‐world and synthetic networks show that the proposed method achieves high accuracy on detecting overlapping communities in networks. 相似文献
13.
快速稳定地发现复杂网络中的社团是近年来社团划分研究的热点。标签传播算法(LPA)具有接近线性的时间复杂度,能快速发现复杂网络中的社团结构,但是该算法在标签传播过程中存在不确定性和随机性,降低了划分结果的准确性和稳定性。为了解决这一问题,设计了一种稳定的标签传播社团划分算法(S-LPA)。该算法利用改进的K-Shell算法来计算节点全局影响力,并结合能反映节点局部影响力的度值以及邻居节点信息,计算节点综合影响力;在标签传播过程中,根据标签影响力更新标签;当网络中所有节点的标签不再变化或者迭代次数达到最大值时,拥有相同标签的节点划分到同一社团中。在真实网络和人工合成网络上的实验结果表明,S-LPA算法不仅具有线性时间复杂度,而且提高了社团划分的质量和稳定性。 相似文献
14.
Balanced Multi-Label Propagation for Overlapping Community Detection in Social Networks 总被引:2,自引:1,他引:1 下载免费PDF全文
武志昊 林友芳 Steve Gregory 万怀宇School of Computer Information Technology Beijing Jiaotong University 田盛丰 《计算机科学技术学报》2012,27(3):468-479
In this paper,we propose a balanced multi-label propagation algorithm(BMLPA) for overlapping community detection in social networks.As well as its fast speed,another important advantage of our method is good stability,which other multi-label propagation algorithms,such as COPRA,lack.In BMLPA,we propose a new update strategy,which requires that community identifiers of one vertex should have balanced belonging coefficients.The advantage of this strategy is that it allows vertices to belong to any number of communities without a global limit on the largest number of community memberships,which is needed for COPRA.Also,we propose a fast method to generate rough cores,which can be used to initialize labels for multi-label propagation algorithms,and are able to improve the quality and stability of results.Experimental results on synthetic and real social networks show that BMLPA is very efficient and effective for uncovering overlapping communities. 相似文献