首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A general and systematic analysis about the relationship between ABCD optical systems and the fractional Fourier transform (FRT) is provided. It is shown that the FRT can be implemented with an ABCD system but usually different scaling factors for the input and output functions must be used. The requirement for the property of direct additivity of the FRT order is derived for a cascade system; and the method of finding the final order of the FRT for a general cascade ABCD system by using the similarity theorem is discussed. As an application example of the results, an approach to observation of the FRT of continuously variable orders with a scale invariant input is demonstrated.  相似文献   

2.
Chirp filtering in the fractional Fourier domain   总被引:2,自引:0,他引:2  
In the Wigner domain of a one-dimensional function, a certain chirp term represents a rotated line delta function. On the other hand, a fractional Fourier transform (FRT) can be associated with a rotation of the Wigner-distribution function by an angle connected with the FRT order. Thus with the FRT tool a chirp and a delta function can be transformed one into the other. Taking the chirp as additive noise, the FRT is used for filtering the line delta function in the appropriate fractional Fourier domain. Experimental filtering results for a Gaussian input function, which is modulated by an additive chirp noise, are shown. Excellent agreement between experiments and computer simulations is achieved.  相似文献   

3.
An analytical and concise formula is derived for the fractional Fourier transform (FRT) of partially coherent beams that is based on the tensorial propagation formula of the cross-spectral density of partially coherent twisted anisotropic Gaussian-Schell-model (GSM) beams. The corresponding tensor ABCD law performing the FRT is obtained. The connections between the FRT formula and the generalized diffraction integral formulas for partially coherent beams passing through aligned optical systems and misaligned optical systems are discussed. With use of the derived formula, the transformation and spectrum properties of partially coherent GSM beams in the FRT plane are studied in detail. The results show that the fractional order of the FRT has strong effects on the transformation properties and the spectrum properties of partially coherent GSM beams. Our method provides a simple and convenient way to study the FRT of twisted anisotropic GSM beams.  相似文献   

4.
The truncated fractional Fourier transform (FRT) is applied to a partially coherent Gaussian Schell-model (GSM) beam. The analytical propagation formula for a partially coherent GSM beam propagating through a truncated FRT optical system is derived by using a tensor method. Furthermore, we report the experimental observation of the truncated FRT for a partially coherent GSM beam. The experimental results are consistent with the theoretical results. Our results show that initial source coherence, fractional order, and aperture width (i.e., truncation parameter) have strong influences on the intensity and coherence properties of the partially coherent beam in the FRT plane. When the aperture width is large, both the intensity and the spectral degree of coherence in the FRT plane are of Gaussian distribution. As the aperture width decreases, the diffraction pattern gradually appears in the FRT plane, and the spectral degree of coherence becomes of non-Gaussian distribution. As the coherence of the initial GSM beam decreases, the diffraction pattern for the case of small aperture widths gradually disappears.  相似文献   

5.
《Journal of Modern Optics》2013,60(12):2379-2383
The application of the fractional Fourier transform (FRT) to optical propagation problems is re-examined as a reply to the recent comment by S. Abe and J. T. Sheridan. It is shown that their criticism to our previous consideration of Fresnel diffraction in the context of the FRT is not appropriate.  相似文献   

6.
Jiang Z  Lu Q  Zhao Y 《Applied optics》1997,36(32):8455-8458
The fractional Fourier transform (FRT) is becoming important in optics and can be used as a new tool to analyze many optical problems. However, we point out that the FRT might be much more sensitive to parameters than the conventional Fourier transform. This sensitivity leads to higher requirements on the optical implementation. On the other hand, high parametric sensitivity can be used in optical diffraction measurements. We give the first proposal, to our knowledge, of the FRT's applications in optical measurement.  相似文献   

7.
Fast numerical algorithm for the linear canonical transform   总被引:1,自引:0,他引:1  
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.  相似文献   

8.
Hua J  Liu L  Li G 《Applied optics》1997,36(32):8490-8492
The scaled fractional Fourier transform is suggested and is implemented optically by one lens for different values of phi and output scale. In addition, physically it relates the FRT with the general lens transform-the optical diffraction between two asymmetrically positioned planes before and after a lens.  相似文献   

9.
Compensation of chromatic dispersion for the optical implementation of mathematical transformations has proved to be an important tool in the design of new optical methods for full-color signal processing. A novel approach for designing dispersion-compensated, broadband optical transformers, both Fourier and Fresnel, based on the collimated Fresnel number is introduced. In a second stage, the above framework is fully exploited to achieve the optical implementation of the fractional Fourier transform (FRT) of any diffracting screen with broadband illumination. Moreover, we demonstrate that the amount of shift variance of the dispersion-compensated FRT can be tuned continuously from the spatial domain, which is totally space variant, to the spectral domain, which is totally space invariant, with the chromatic correction remaining unaltered.  相似文献   

10.
We report the experimental observation of the fractional Fourier transform (FRT) for a partially coherent optical beam with Gaussian statistics [i.e., partially coherent Gaussian Schell-model (GSM) beam]. The intensity distribution (or beam width) and the modulus of the square of the spectral degree of coherence (or coherence width) of a partially coherent GSM beam in the FRT plane are measured, and the experimental results are analyzed and agree well with the theoretical results. The FRT optical system provides a convenient way to control the properties, e.g., the intensity distribution, beam width, spectral degree of coherence, and coherence width, of a partially coherent beam.  相似文献   

11.
We study the relation between optical lens systems that perform a fractional Fourier transform (FRFT) with the geometrical cardinal planes. We demonstrate that lens systems symmetrical with respect to the central plane provide an exact FRFT link between the input and output planes. Moreover, we show that the fractional order of the transform has real values between 0 and 2 when light propagation is produced between principal planes and antiprincipal planes, respectively. Finally, we use this new point of view to design an optical lens system that provides FRFTs with variable fractional order in the range (0,2) without moving the input and output planes.  相似文献   

12.
《Journal of Modern Optics》2013,60(12):2373-2378
Although their mathematical forms apparently resemble each other, the diffraction integral and fractional Fourier transformation (FRT) have completely different physical meanings. We point out that an interpretation of the FRT given recently in a paper by Alieva et al. is not physically appropriate. We then show how those integral transformations can be treated in a unified way within the framework of the special affine Fourier transformation. Finally the multidimensional FRT presented in the above paper is further generalized to allow n independent fractional degrees.  相似文献   

13.
The coincidence subwavelength fractional Fourier transforms (FRTs) with entangled photon pairs and incoherent light radiation are introduced as an extension of the recently introduced coincidence FRT. Optical systems for implementing the coincidence subwavelength FRTs are designed. The width of the coincidence subwavelength FRT pattern is two times narrower than the width of the coincidence FRT. The coincidence subwavelength FRT with partially coherent light radiation is also studied numerically. Differences between the coincidence subwavelength FRT with entangled photon pairs and that with incoherent light radiation are discussed.  相似文献   

14.
We introduce the coincidence fractional Fourier transform (FRT) implemented with incoherent and partially coherent light radiation. Optical systems for implementing the coincidence FRT are designed. The results show that the visibility and quality of the coincidence FRT of an object are closely related to the light source's transverse size, coherence, and spectral width. As an example, we numerically study the coincidence FRT of a single slit.  相似文献   

15.
García J  Mas D  Dorsch RG 《Applied optics》1996,35(35):7013-7018
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed.  相似文献   

16.
The fractional Fourier transform (FRT) is applied to a partially coherent off-axis Gaussian Schell-model (GSM) beam, and an analytical formula is derived for the FRT of a partially coherent off-axis GSM beam. The corresponding tensor ABCD law for performing the FRT of a partially coherent off-axis GSM beam is also obtained. As an application example, the FRT of a partially coherent linear laser array that is expanded as a sum of off-axis GSM beams is studied. The derived formulas are used to provide numerical examples. The formulas provide a convenient way to analyze and calculate the FRT of a partially coherent off-axis GSM beam.  相似文献   

17.
Image-scaling problem in the optical fractional Fourier transform   总被引:1,自引:0,他引:1  
Liu S  Ren H  Zhang J  Zhang X 《Applied optics》1997,36(23):5671-5674
The significance of scale factors and cascade of optical fractional Fourier transform is emphasized. Exact and cascadable fractional Fourier transforms in practical applications mandate that the image scale be the reciprocal of the scale of the input plane controlled by the optical setup. The practical setup of the optical fractional Fourier transform must be without any quadratic phase term at the spectrum plane.  相似文献   

18.
在浮动基准理论(FRT)应用于血糖无创光学检测研究成果的基础上,进一步研究其在其他血液成分(如胆红素)无创光学检测中的适用性.根据径向检测基准位置存在的条件,经蒙特卡洛模拟的结果表明胆红素测量中难以找到浮动基准位置;而通过研究胆红素与水的置换效应,发现在波长524nm处吸光度值与胆红素的浓度无关,将该波长作为基准波长,实际测量中可以用于去除背景噪声和环境干扰.综合FRT在血糖及胆红素两种不同血液成分中应用的研究结果表明:对于不同检测成分,在相应的检测波段,浮动基准位置和浮动基准波长有一定的特异性,从而进一步完善和扩展了FRT的应用领域.  相似文献   

19.
We show that an arbitrary paraxial optical system, compounded with its reflection in an appropriately warped mirror, is a pure fractional Fourier transformer between coincident input and output planes. The geometric action of reflection on optical systems is introduced axiomatically and is developed in the paraxial regime. The correction of aberrations by warp of the mirror is briefly addressed.  相似文献   

20.
Parallel fractional correlation: an optical implementation   总被引:1,自引:0,他引:1  
Granieri S  Tebaldi M  Furlan WD 《Applied optics》2001,40(35):6439-6444
An optical setup to obtain all the fractional correlations of a one-dimensional input in a single display is implemented. The system works as a multichannel parallel correlator for a continuous set of fractional orders and presents a variable shift variance. Some experimental results together with computer simulations are performed to illustrate the performance of our proposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号