共查询到16条相似文献,搜索用时 93 毫秒
1.
为适应造船业发展的需要,生产市场所需的高强度船板,天钢中厚板厂利用3500mm双机架轧机和ACC层流冷却系统等自身设备能力的优势,进行了DH36级高强度船板轧制技术的开发,试轧了16mm和30mm两个规格的DH36级高强度船板。采用了合理的成分设计和控轧控冷技术,对加入不同合金元素的船板分析比较了试轧制的过程与结果,证明Nb系高强船板钢轧制工艺制度较优,为工业生产提供了依据。 相似文献
2.
1 前言随着船舶工业的迅速发展和海洋油气田的开发 ,造船及采油平台用钢的需求量在不断增加 ,预计我国高强度船板的年需量将达 5 0万 t。 2 0 0 2年我公司生产高强度船板已达 8.5 6万 t,高强度船板具有广阔的发展前途 ,已被公司列入名牌产品发展规划 ,成为舞钢的主产品之一。舞钢已有多年的高强度船板生产经验 ,已取得九家船级社的生产资格认证 ,但目前仍存在性能不稳定 ,屈服强度不合较多的问题。本文利用回归的方法 ,对近两年我公司生产的 DH36钢板的性能进行分析 ,确定相关变量对性能的影响关系及其特性值 ,利用回归方程进行成分优化、… 相似文献
3.
介绍了DH36高强度船板钢在ASP生产线的开发研制情况。通过合理设计化学成分,严格控制各工序操作,开发出了DH36高强度船板钢,试制的产品具有优良的强韧性、成形性及焊接性能,已通过挪威船级社认证。 相似文献
4.
5.
通过不同的控冷工艺既采用不同的冷却速度、终轧温度及终冷温度对船板钢DH36的冲击韧性和力学性能的影响进行分析。从而得到最佳的控冷工艺:38mm厚的钢板,终冷温度控制在660℃~680℃,50mm厚的钢板,终冷温度控制在630℃~670℃。使船板钢低温冲击韧性满足标准和船级社要求。 相似文献
6.
7.
通过热模拟试验测定了F40高强度船板在1~35℃/s冷速下的相变过程,绘制出连续冷却转变(CCT)曲线,分析了不同冷却速度对相变规律和组织演变的影响.结果表明,F40 Ar3为760℃,冷速在5~15℃/s时组织主要为准多边形及针状铁素体,是F40比较理想的组织形态. 相似文献
8.
9.
B级船板生产工艺研究 总被引:1,自引:0,他引:1
本文主要介绍了在生产B级船板过程中,通过控制开轧温度,终轧温度及变形程度,细化晶粒,改善钢板的组织,以解决船板冲击韧性低的问题,提高船板生产的性能合格率。 相似文献
10.
11.
介绍了临钢中板厂生产开发DH36高强度船板钢的成分设计思路、生产工艺控制要点及实物质量水平。采用低碳、Nb-V微合金成分设计,发挥临钢四辊生产线的设备优势,通过控轧控冷工艺生产的高强度船板钢DH36综合力学性能达到了多国船级社规范的特殊要求。 相似文献
12.
13.
14.
15.
高强度船板第一次正火后力学性能不合格,又在两相区加热进行不完全奥氏体化正火试验,产生了细粒状贝茵体组织,使高强度船板力学性能满足了标准的要求。 相似文献
16.
为提高市场竞争力,扩展船板钢品种生产能力,通过对市场需求量较大的D级高强度船板的分析研究,采取D级船板钢水微合金化、夹杂物形态控制和轧制工艺参数的优化改进,得到钢质纯净、组织细化的D级船板,使其具有优异的综合力学性能,满足客户的要求。 相似文献