共查询到17条相似文献,搜索用时 140 毫秒
1.
钨基高密度合金的静液挤压形变强化研究 总被引:3,自引:0,他引:3
采用静液挤压工艺对91W-Ni-Fe合金进行了静液挤压变形强化,研究了91钨合金经静液挤压变形之后其显微组织、力学性能与挤压变形量之间的关系.结果表明:钨颗粒长径比随挤压变形量的增大而增大,钨颗粒的有效连接度随挤压变形量的增大而减小;钨合金的强度随挤压变形量的增大而增加,其增加的幅度随挤压变形量的增大而减小,而延伸率和断面收缩率则随挤压变形量的增大而不断下降. 相似文献
2.
静液挤压钨合金的显微组织与力学性能 总被引:4,自引:0,他引:4
含钨量较高的W-Ni-Fe密度高合金具有密度高、强度与韧性配合较好等特点,适合用作动能穿甲弹及防辐射屏蔽材料;而静液挤压技术在脆性材料变形强化方面具有很大的潜在优势.研究了静液挤压93W-4.9Ni-2.1Fe合金的性能与显微组织,并与传统的旋锻态93W-4.9Ni-2.1Fe合金进行了比较.结果表明,经静液挤压变形强化的高比重钨合金,硬度分布和显微组织更均匀;性能更好. 相似文献
3.
热液静挤压93W-4.9Ni-2.1Fe合金显微组织与力学性能 总被引:1,自引:0,他引:1
采用热液静挤压工艺对液相烧结态93W-4.9Ni-2.1Fe合金进行了变形,挤压温度为1200℃,变形量60%~75%:系统研究了挤压态合金力学性能与显微组织之间的关系。结果表明,挤压态合金的钨颗粒内部表征为高密度位错构成的胞状亚结构,而粘结相在挤压过程中发生了动态再结晶。挤压态合金的强度随着变形量的增大而不断增加,延伸率则随着变形量的增大而不断减小。 相似文献
4.
5.
6.
7.
研究了Zr41.2Ti13.8Cu12.5Ni10Be22.5非晶合金在过冷液相区内静液挤压的变形行为以及结构变化。结果表明:非晶合金在高应变速率下产生了明显的塑性变形,直径从16 mm变为12 mm,断裂为4段,且样品断口上随机分布着充分发展与未充分发展的脉纹式切变带,由此可看出非晶合金的变形为非牛顿体变形行为;挤压后的样品约有3%的非晶相发生晶化,在非晶基体上析出10~20 nm的纳米晶粒,导致挤压后非晶合金的热稳定性降低;静液挤压高应变速率变形条件使非晶合金产生非均匀流变,是造成非晶合金断裂的主要原因。 相似文献
8.
研究了不同挤压温度(350和200 ℃)对反挤压Zn-6Al合金室温拉伸性能的影响。利用扫描电镜、电子背散射技术以及电子万能试验机对Zn-Al合金的微观组织和力学性能进行了详细的研究。结果表明,由于具有细晶组织、高的施密特因子和无层片状组织,随着挤压温度从350 ℃降低至200 ℃,在应变速率为10-3 s-1时,反挤压Zn-6Al合金的伸长率从98%提高至198%。 相似文献
9.
10.
11.
Ti14合金半固态变形组织及力学性能 总被引:1,自引:0,他引:1
以新型阻燃Ti14合金(α+Ti2Cu)为研究对象,分别进行常规固态锻造(950 ℃)和半固态锻造(1000 ℃),对比研究合金半固态变形的组织和拉伸性能,并讨论可能引发组织和拉伸性能变化的原因.结果表明:半固态锻造过程未发生动态再结晶,使得室温组织晶粒粗大,液相Ti2Cu在压力作用下沿晶界分布,形成了偏析,粗化了晶界,改变了晶界的结构;晶界结构的变化诱发了晶界的硬化效应,使得室温拉伸的强度升高,塑性降低. 相似文献
12.
13.
14.
挤压比对Mg—Zn—Zr—RE合金组织和性能的影响 总被引:1,自引:0,他引:1
研究了不同挤压比对铸态Mg-5.4Zn-0.3Zr-0.98RE镁合金微观组织和力学性能的影响。研究表明,当挤压比较小时,微观组织呈现出粗晶和细晶组成的混晶组织;随着挤压比增加到16,微观组织发生完全再结晶,获得均匀、细小的再结晶组织。动态再结晶是铸态镁合金Mg-5.4Zn-0.3Zr-0.98RE晶粒细化的机制。在挤压温度为250℃,挤压比为16时,合金获得的力学性能最好,抗拉强度为345MPa,屈服强度为223MPa,断后伸长率为21.4%。 相似文献
15.
采用分离式Hopkinson动态压缩装置对微波烧结93W-4.9Ni-2.1Fe合金棒材切割试样进行了动态力学性能研究,采用扫描电镜、光学电镜和纳米压痕硬度仪分别对合金试样微观组织和显微硬度进行了表征和测试。结果表明:微波烧结试样在受到冲击压缩时,钨晶粒与粘结相都发生均匀变形;应变率为2200s-1时,合金的最大应力为2587MPa,钨晶粒和粘结相显微硬度分别为8.716和6.267GPa;当应变速率为2200s-1时合金粘结相变形产生明显热软化效应,在与冲击力呈45°的方向形成了绝热剪切带,位于剪切带中心区域的钨晶粒沿其扩展方向发生变形被拉成纤维状。 相似文献
16.
研究了铸态AZ91D镁合金在等径角挤压(Equal Channel Angular Extrusion,ECAE)后的室温力学性能和微观组织特征。在力学性能方面,铸态AZ91D镁合金经过1道次ECAE变形后,室温力学性能(屈服强度、抗拉强度、延伸率、弹性模量)由86.3 MPa,146.3 MPa,1.84%,42.5 GPa分别提高到144.1MPa,222.8 MPa,3.49%,47.7 GPa;2道次后变为109.1 MPa,268.3 MPa,4.48%,48.9 GPa。在微观组织方面,挤压1道次后,由于枝状晶粒在等径道弯角处滑动和转动时发生破碎,AZ91D镁合金的晶粒和黑色共晶相Mg17Al12沿挤压方向拉长为条带状;挤压2道次后,黑色共晶相开始部分回溶,共晶相有所减少且呈非连续分布。 相似文献
17.
从金属变形流动的机理出发,对连续铸挤过程变形区金属流动状态及挤压制品的内部组织进行了深入分析,并对铸挤制品的机械性能进行测试。 相似文献