首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cationic graft polymerization initiated by benzylium perchlorate groups introduced onto ultrafine silica surface was investigated. The introduction of benzylium perchlorate groups onto the surface was achieved by the reaction of silver perchlorate with surface benzyl chloride groups, which were introduced by the treatment of silica with 4-(chloromethyl)phenyltrimethoxysilane. The cationic graft polymerization of styrene and cationic ring-opening polymerization of -caprolactone were found to be initiated by the surface benzylium perchlorate groups and the corresponding polymers were grafted onto the surface. The percentage of grafting onto silica surface decreased with increasing polymerization temperature, because chain transfer reaction of growing polymer cation is accelerated with increasing polymerization temperature.  相似文献   

2.
Summary The effect of initiating groups introduced onto silica surface on the molecular weight of grafted polystyrene chain was investigated. By the treatment of polystyrene-grafted silica with aqueous solution of alkali, surface grafted polystyrene was isolated from the surface. The molecular weight of polystyrene grafted onto the silica obtained from the radical graft polymerization initiated by peroxyester groups introduced onto the surface was found to be much larger than that from the cationic polymerization initiated by acylium perchlorate groups. The number of grafted polystyrene in the radical polymerization, however, was much less than that in the cationic polymerization. Furthermore, the effect of molecular weight of grafted polystyrene on the dispersibility of silica in tetrahydrofuran was examined.  相似文献   

3.
The surface grafting of polymers onto carbon thin film deposited on a glass plate was achieved by two methods: the graft polymerization initiated by initiating groups introduced onto the surface; and the trapping of polymer radicals by surface aromatic rings of the thin film. It was found that the radical and cationic graft polymerization of vinyl monomers are initiated by azo and acylium perchlorate groups introduced onto the surface, respectively, and the corresponding polymers are grafted onto the surface: the surface grafting of polymers were confirmed by the contact angle of the surface with water. In addition, the anionic ring-opening alternating copolymerization of epoxides with cyclic acid anhydrides was found to be initiated by potassium carboxylate groups on the carbon thin film to give the corresponding polyester-grafted carbon thin film. On the other hand, polymer radicals formed by the decomposition of azo polymer, such as poly(polydimethylsiloxane-azobiscyanopentanoate) and poly(polyoxyethylene-azobiscyanopentanoate), were successfully trapped by the surface aromatic rings of carbon thin film and polydimethylsiloxane and polyoxyethylene were grafted onto the surface. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The cationic graft polymerization of several monomers initiated by acylium perchlorate groups introduced onto the carbon fiber surface was investigated to modify the surface. The introduction of acylium perchlorate groups was successfully achieved by the reaction of silver perchlorate with acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride. It was found that the cationic polymerization of styrene is initiated by acylium perchlorate groups on the carbon fiber. In the polymerization, polystyrene was grafted onto the carbon fiber surface through the propagation of polystyrene from the surface. Ungrafted polymer was also formed by the chain transfer reaction of growing polymer cation to the monomer. The acylium perchlorate groups have the ability to initiate cationic ring-opening polymerization of tetrahydrofuran (THF) and ε-caprolactone (CL), polyTHF and polyCL being grafted onto the carbon fiber surface, respectively. Polyacetals, such as poly(1,3-dioxolane) and polyoxymethylene, were able to graft onto the carbon fiber by cationic ring-opening polymerization of the corresponding monomers.  相似文献   

5.
The surface grafting of polymers onto a glass plate surface was achieved by the polymerization of vinyl monomers initiated by initiating groups introduced onto the surface. Azo groups were introduced onto the glass plate surface by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with isocyanate groups, which were introduced by the treatment with tolylene-2,4-diisocyanate. The radical polymerization of various vinyl monomers was initiated by azo groups introduced onto the glass plate surface and the corresponding polymers were grafted from the surface: The surface grafting of polymers was confirmed by IR spectra, and the contact angle of surface, with water. The contact angle of the glass plate increased by the grafting of hydrophobic polymers, but decreased by the grafting of hydrophilic polymers. The radical postpolymerization was successfully initiated by the pendant peroxycarbonate groups of grafted polymer on the surface to give branched polymer-grafted glass plate. The cationic polymerization of vinyl monomers was also successfully initiated by benzylium perchlorate groups introduced onto the glass plate surface and the corresponding polymers were grafted onto the surface. The contact angle of the glass plate surface obtained from the cationic polymerization of styrene was larger than that obtained from the radical polymerization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2165–2172, 1997  相似文献   

6.
The introduction of peroxycarbonate groups onto a silica surface and the graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto a silica surface were investigated. The introduction of peroxycarbonate groups onto a silica surface was achieved by Michael addition of amino groups introduced onto the silica surface to t‐butylperoxy‐2‐methacryloyloxyethylcarbonate (HEPO). The amount of peroxycarbonate groups was determined to be 0.17 mmol/g. The graft polymerization of various vinyl monomers such as styrene (St), N‐vinyl‐2‐pyrrolidinone (NVPD), and 2‐hydroxyethyl methacrylate (HEMA) was initiated by peroxycarbonate groups introduced onto the silica surface to give the corresponding polymer‐grafted silicas. The percentage of poly(St)‐grafting reached about 120% after 5 h. This means that 1.20 g of poly(St) is grafted onto 1.0 g of silica. The surface of poly(St)‐grafted silica shows a hydrophobic nature, but the surfaces of poly(NVPD) and poly(HEMA)‐grafted silica show a hydrophilic nature. Furthermore, the poly(St)‐grafted silica was found to give a stable colloidal dispersion in a good solvent for the grafted polymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1491–1497, 1999  相似文献   

7.
To prepare polymer-grafted nano-sized silica with hydrophilic core and hydrophobic shell and with higher percentage of grafting, the postgraft polymerization of vinyl polymers onto hyperbranched poly(amidoamine)-grafted (PAMAM-grafted) nano-sized silica initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica was investigated. The introduction of trichloroacetyl groups onto PAMAM-grafted silica surfaces was readily achieved by the reaction of trichloroacetyl isocyanate with terminal amino groups of PAMAM-grafted silica. It was found that the polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) was successfully initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica. In the polymerization, the corresponding vinyl polymers were effectively postgrafted onto PAMAM-grafted silica, based on the propagation of polymer from surface radicals formed by the reaction of terminal trichloroacetyl groups with Mo(CO)6: the percentage of PMMA postgrafting onto PAMAM-grafted silica reached to 400% after 30 min, but the formation of gel was observed after 35 min. The formation of gel tends to decrease by use of hyperbranched PAMAM-grafted silica with higher percentage of grafting. The vinyl polymer-postgrafted nano-sized silica gave a stable colloidal dispersion in various organic solvents.  相似文献   

8.
To control the surface wettability of nano-sized silica surface, the postgrafting of hydrophilic and hydrophobic polymers to grafted polymer chains on the surface was investigated. Polymers having blocked isocyanate groups were successfully grafted onto nano-sized silica surface by the graft copolymerization of methyl methacrylate (MMA) with 2-(O-[1′-methylpropylideneamino]caboxyamino)ethyl methacrylate (MOIB) initiated by azo groups previously introduced onto the surface. The blocked isocyanate groups of poly(MMA-co-MOIB)-grafted silica were stable in a desiccator, but isocyanate groups were readily regenerated by heating at 150 °C. The hydrophilic polymers, such as poly(ethylene glycol) (PEG) and poly(ethyleneimine) (PEI), were postgrafted onto the poly(MMA-co-MOIB)-grafted silica by the reaction of functional groups of PEG and PEI with pendant isocyanate groups of poly(MMA-co-MOI)-grafted silica to give branched polymer-grafted silica. The percentage of grafting increased with increasing molecular weight of PEG, but the number of postgrafted chain decreased, because of steric hindrance. The hydrophobic polymers, such as poly(dimethylsiloxane) were also postgrafted onto poly(MMA-co-MOI)-grafted silica. It was found that the grafting of hydrophobic polymer and the postgrafting of hydrophilic polymer branches readily controls the wettability of silica surface to water.  相似文献   

9.
For the purpose of the prevention of the environmental pollution and the simplification of reaction process, the scale-up synthesis of polymer-grafted silica nanoparticle by surface initiated cationic ring-opening graft polymerization of 2-methyl-2-oxazoline (MeOZO) in a solvent-free dry-system was investigated. The introduction of iodopropyl groups onto the silica surface as initiating group was carried out by the reaction of silanol groups with 3-iodopropyl- trimethoxysilane in a solvent-free dry-system. The graft polymerization of MeOZO onto silica nanoparticle surface in a solvent-free dry-system was initiated by spraying the monomer onto the surface having iodopropyl groups and the polymerization was conducted in powder fluid system under nitrogen. After the polymerization, unreacted MeOZO was readily removed under high vacuum. It was found that the cationic ring-opening polymerization of MeOZO was successfully initiated in the solvent-free dry-system to give polyMeOZO-grafted silica nanoparticles. The maximum grafting of polyMeOZO obtained from the polymerization initiated by iodopropyl groups on the surface reached 47.7 %. The percentage of grafting and grafting efficiency during the cationic ring-opening graft polymerization in the solvent-free dry-system were considerably larger than those in solution system. This suggests that chain transfer reaction from surface growing cation to monomer was effectively inhibited in the solvent-free dry-system.  相似文献   

10.
Summary The ring-opening polymerization of 2-oxazolines (OXZs) was found to be initiated by chloromethyl groups introduced onto carbon black surface. The introduction of chloromethyl groups onto the surface was achieved by the reaction of carbon black with 3,3-bischloromethylbenzoyl peroxide in carbon tetrachloride. During the polymerization, poly-OXZs were grafted from carbon black based on the propagation of the polymers from the surface: percentage of grafting increased with an increase of conversion and reached 40–60%. The polymerization was accelerated by the addition of potassium iodide. Poly-OXZ-grafted carbon black produced stable colloidal dispersions in both hydrophobic and hydrophilic solvents.  相似文献   

11.
Sulfonated polymer/fumed silica hybrid nanoparticles were prepared via surface‐initiated free radical polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (PAMPS‐g‐FSN), styrene sulfonic acid sodium salt (PSSA‐g‐FSN) and vinyl sulfonic acid sodium salt (PVSA‐g‐FSN) from the surface of aminopropyl‐functionalized fumed silica nanoparticles (AFSNs) dispersed in aqueous medium. Cerium(IV) ammonium nitrate/nitric acid and sodium dodecyl sulfate were used as redox initiator and stabilizer respectively. AFSNs were prepared by covalently attaching 3‐aminopropyltriethoxysilane onto the surface of fumed silica nanoparticles. Sulfonated monomers (AMPS, SSA or VSA) were then grafted onto the AFSNs ultrasonically dispersed in water via redox initiation at 40 °C. Structure, thermal properties, particle size and morphology of the AFSNs and PAMPS‐g‐FSN, PSSA‐g‐FSN and PVSA‐g‐FSN hybrid nanoparticles were characterized by Fourier transform infrared spectroscopy, TGA, SEM, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results indicated that the sulfonated monomers were successfully grafted onto the fumed silica nanoparticles. Grafting amounts of the sulfonated polymers onto the fumed silica nanoparticle surface were estimated from TGA thermograms to be 59%, 13% and 29% for the PAMPS, PSSA and PVSA, respectively. From SEM, TEM and DLS analysis, polymer‐grafted fumed silica nanoparticles with an average diameter smaller than 70 nm and a (semi‐) spherical shape were observed. A significant bimodal particle size distribution was observed only for the PAMPS‐g‐FSN with average diameters of 39.6 nm (84.1% per number) and 106 nm (15.9% per number). The hydrophilic sulfonated polymer/grafted fumed silica obtained from the redox graft polymerization gave a stable colloidal dispersion in acidic aqueous medium. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The grafting of vinyl polymers onto the surface of polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups (Ti/Si–R–OH) were investigated. The introduction of azo and trichloroacetyl groups onto the surface of Ti/Si–R–OH was achieved by the reaction of the surface alcoholic hydroxyl groups with 4,4′-azobis(4-cyanopentanoic acid) and trichloroacetyl isocyanate, respectively. The radical polymerizations of vinyl monomers were successfully initiated by the azo groups introduced onto the surface and by the system consisting of Mo(CO)6 and Ti/Si–R–COCCl3. During the polymerization, the corresponding polymers were effectively grafted onto the titanium dioxide surface through propagation from surface radicals formed by the decomposition of azo groups and by the reaction of Mo(CO)6 with trichloroacetyl groups on the surface. The percentage of grafting and grafting efficiency in the graft polymerization initiated by the system consisting of Ti/Si–R–COCCl3 and Mo(CO)6 were much larger than those initiated by azo groups. The polymer-grafted titanium dioxide was found to produce a stable colloidal dispersion in good solvents for the grafted polymer. The dispersibility of poly(N,N-diethylacrylamide)-grafted titanium dioxide in water was controlled by temperature. In addition, the wettability of the surface of titanium dioxide to water was readily controlled by grafting of hydrophilic or hydrophobic polymers.  相似文献   

13.
Silica nanoparticles were successfully modified with miktoarm brushes via atom transfer radical polymerization (ATRP) using three different approaches. In the first approach: “graft onto and from”, a poly(tert-butyl acrylate) (PtBA) macroinitiator was grafted onto the surface of a monomer-modified silica nanoparticle. Then, polystyrene (PSt) brush was grafted from the surface-tethered reactive chain end. In the second approach: “two-step reverse ATRP”, the PtBA and poly(n-butyl acrylate) (PBA) brushes were consecutively grafted from initiator-modified silica particles via ATRP. The polymerization was initiated from the silica surface via a two-step controlled thermal decomposition of surface-tethered diazo initiator moieties. In the third method: “diblock first”, a diblock copolymer of poly(tert-butyl acrylate) and poly(glycidyl methacrylate) (PtBA-b-PGMA) was grafted onto amine-modified silica particles. The diblock copolymer was covalently attached to the silica surface via interaction between surface-tethered amine groups and the short reactive block containing glycidyl groups. Next, the polystyrene brushes were grafted from surface-tethered reactive chain end. The materials prepared by three different approaches were characterized using gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The PtBA brushes were hydrolyzed under acidic conditions to form poly(acrylic acid) (PAA) brushes. The resulting materials were imaged using atomic force microscopy (AFM) and transmission electron microscopy (TEM).  相似文献   

14.
In this study, grafting of hyperbranched polyamidoamine (PAMAM) polymer onto ultrafine silica followed by functionalization via the introduction of phosphonic acid groups into the branch ends was performed. First, an initiating site was incorporated into the silica surface by reacting the silica silanol group with 3‐aminopropyltriethoxysilane, producing amino‐functionalized silica. The free amine group content was altered by varying the ratio of methanol to water in the hydrolysis step of the silanization reaction. Grafting of PAMAM was attained by three rounds of sequential Michael addition of silica amino groups to methyl acrylate and amidation of the resulting terminal methyl ester groups with ethylenediamine. Completion of the grafting reaction in each step was clearly confirmed using FTIR analysis. Excessive ethylenediamine and unattached hyperbranched PAMAM present in the reaction product were removed by dialysis with a molecular weight cutoff of 6000–7000 Daltons. However, the amino group content determined in each step was found to be significantly lower than theoretically expected, perhaps indicative of side reactions and, in later stages, steric hindrance. The resultant hyperbranched PAMAM‐grafted onto silica was functionalized by phosphorylation of the terminal amino groups by a Mannich type reaction, producing the phosphorylated hyperbranched PAMAM‐grafted silica. Then its application on cotton fabric to produce fire‐retardant cellulose was tentatively investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The graft polymerization of vinyl monomers onto vapor grown carbon fibers (VGCF) initiated by the system consisting of molybdenum hexacarbonyl (Mo(CO)6) and trichloroacetyl (COCCl3) groups introduced onto the surface was investigated. The introduction of trichloroacetyl groups onto VGCF surface was successfully achieved by the reaction of carboxyl groups on VGCF surface with trichloroacetyl isocyanate. It was found that the radical graft polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) is successfully initiated by the system consisting of Mo(CO)6 and COCCl3 groups introduced onto the surfaces. In the polymerization, the corresponding vinyl polymers were effectively grafted onto the VGCF surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mo(CO)6: the percentage of PMMA grafting reached 40%. Polymer-grafted VGCF gave a stable colloidal dispersion in good solvents for grafted polymer. The electric resistance of composite prepared from the polymer-grafted VGCF suddenly increased in organic solvent vapor over 103 times, and returned to initial resistance when it was transferred into dry air. These results indicate that such composites can be used as novel gas sensors.  相似文献   

16.
《Reactive Polymers》1994,22(1):47-53
The radical graft polymerization of vinyl monomers onto the surface of aramid powder, i.e., poly(p-phenylene terephthalamide) powder, initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto the aramid surface was achieved by the reaction of surface acyl chloride groups, which were introduced by the treatment of aramid powder with adipoyl dichloride, with 2,2′-azobis[2-(2-imidazolyn-2-yl)propane] in the presence of pyridine: the amount of azo groups thus introduced onto the surface was determined to be 0.57 mmol/g by elemental analysis. It was found that the polymerizations of methyl methacrylate (MMA) and styrene were successfully initiated by the azo groups on the surface and that the corresponding polymers were grafted onto the surface. The percentage of surface grafting of polystyrene and poly(methyl methacrylate) (PMMA) increased up to 37.6 and 26.5%, respectively. Thermogravimetric analysis of polymer surface-grafted aramid powder confirmed that the grafting of polymers is limited on the surface. The polymerization rate was found to bear a first-order dependence on the concentration of aramid powder having azo groups. This suggests that in graft polymerization, unimolecular termination preferentially proceeds.  相似文献   

17.
To improve dispersibility of silica nanoparticle in organic solvents, the grafting of poly(L ‐lactide) (PLLA) onto silica nanoparticle surface by ring‐opening polymerization of L‐lactide (LA) was investigated in the presence of an amidine base catalyst. The ring‐opening polymerization of LA successfully initiated in the presence of silica having amino groups (silica‐NH2) and an amidine base catalyst to give PLLA‐grafted silica, but not in the presence of untreated silica (silica‐OH). In the absence of the amidine base catalyst no ring‐opening polymerization of LA even in the presence of silica‐NH2 and no grafting of PLLA onto silica were observed. It became apparent that the amidine base catalyst acts as an effective catalyst for the ring‐opening graft polymerization of LA from the surface of silica‐NH2. In addition, it was found that the percentage of PLLA grafting onto silica could be controlled according to the reaction conditions. The average particle size of PLLA‐grafted silica was smaller than that of silica‐NH2. Therefore, it was considered that the aggregation structure of silica nanoparticles was considerably destroyed by grafting of PLLA onto the surface. The PLLA‐grafted silica gave a stable dispersion in polar solvents, which are good solvents for PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The free‐radical graft polymerization of vinyl acetate onto nonporous silica particles was studied experimentally. The grafting procedure consisted of surface activation with vinyltrimethoxysilane, followed by free‐radical graft polymerization of vinyl acetate in ethyl acetate with 2,2′‐azobis(2,4‐dimethylpentanenitrile) initiator. Initial monomer concentration was varied from 10 to 40% by volume and the reaction was spanned from 50 to 70°C. The resulting grafted polymer, which was stable over a wide range of pH levels, consisted of polymer chains that are terminally and covalently bonded to the silica substrate. The experimental polymerization rate order, with respect to monomer concentration, ranged from 1.61 to 2.00, consistent with the kinetic order for the high polymerization regime. The corresponding rate order for polymer grafting varied from 1.24 to 1.43. The polymer graft yield increased with both initial monomer concentration and reaction temperature, and the polymer‐grafted surface became more hydrophobic with increasing polymer graft yield. The present study suggests that a denser grafted polymer phase of shorter chains was created upon increasing temperature. On the other hand, both polymer chain length and polymer graft density increased with initial monomer concentration. Atomic force microscopy–determined topology of the polymer‐grafted surface revealed a distribution of surface clusters and surface elevations consistent with the expected broad molecular‐weight distribution for free‐radical polymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 300–310, 2003  相似文献   

19.
A procedure to synthesize poly(methyl methacrylate)‐grafted silica microparticles was developed by using radical photopolymerization of methyl methacrylate (MMA) initiated from N,N‐diethyldithiocarbamate (DEDT) groups previously bound to the silica surface (grafting “from”). The functionalization of silica microparticles with DEDT groups was performed in two steps: introduction of chlorinated functions onto the surface of silica particles, and then nucleophilic substitution of chlorines by DEDT functions via a SN2 mechanism. The study was performed with a Kieselgel® S silica which was initially chlorinated in surface, either by direct chlorination of silanols with thionyl chloride, or by using a condensation reaction between silanols and a chlorofunctional trialkoxysilane reagent, 4‐(chloromethyl)phenyltrimethoxysilane and chloromethyltriethoxysilane, respectively. Three types of DEDT‐functionalized silica microparticles were prepared with a good control of the reactions, and then characterized by solid‐state 13C and 29Si CP/MAS NMR. Their ability to initiate MMA photopolymerization was studied. The kinetics of MMA photopolymerization was followed by HPLC and 1H‐NMR. Whatever the silica used the grafting progresses very slowly. On the other hand, the conversion of MMA in PMMA grafts is depending on the structure of the DEDT‐functionalized Kieselgel® S used. Poly(methyl methacrylate)‐grafted silica microparticles bearing high length grafts ( about 100) were synthesized. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Hydrophilic polymer/sodium montmorillonite (Na‐MMT) hybrid nanomaterials were prepared via surface‐initiated redox polymerization of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (PAMPS‐g‐MMT), acrylamide (PAAm‐g‐MMT) and styrenesulfonic acid sodium salt (PSSA‐g‐MMT) from surface of aminopropyl‐functionalized sodium montmorillonite (AMMT) dispersed in an aqueous medium. Cerium(IV) ammonium nitrate/nitric acid and aminopropyl groups on the surface of AMMT were used as oxidant and reducing groups, respectively. AMMT was prepared by covalently attaching 3‐aminopropyltriethoxysilane onto the surface of Na‐MMT. Hydrophilic monomers (AMPS, AAm and SSA) were then grafted onto AMMT dispersed in water via redox initiation at 40 °C. Structure, morphology and thermal properties of the AMMT, PAMPS‐g‐MMT, PAAm‐g‐MMT and PSSA‐g‐MMT hybrid materials were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and thermogravimetric (TGA) analyses, respectively. FTIR results indicated that hydrophilic monomers were successfully grafted onto the surface of MMT. Grafting amounts of the hydrophilic polymers were estimated from TGA thermograms to be 28.8, 118.8 and 14.4% for PAMPS, PAAm and PSSA, respectively. XRD patterns showed an exfoliated morphology for PAMPS‐ and PAAm‐grafted MMT hybrid nanomaterials and an intercalated/exfoliated morphology for the PSSA‐grafted MMT one. The effect of the nature of hydrophilic monomer on the grafting efficiency is discussed in detail. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号