首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality ferroelectric films of Mn-doped Pb(Zr0.3Ti0.7)O3 (PMZT) were prepared using the sol-gel method, and the temperature dependence of ferroelectric, dielectric, and leakage current properties (JE) were explored in detail using the top electrode/ferroelectric films/bottom electrode capacitor heterostructure. The enhancement of polarization and dielectric properties by element doping is clearly observed by 3% Mn-doping. Such enhancement is beneficial for the application of these films in ferroelectric random-access memory. In addition, the analysis of leakage current reveals symmetric behavior with 3% Mn-doping and the leakage current density gradually increases with increasing temperature, which may be due to the movement of domain wall and oxygen vacancy. The dominant leakage current conduction mechanism is bulk-limited ohmic or interface-limited Schottky emission conduction within a wide temperature range. The results might be meaningful for further work on ferroelectric electrical devices with improved ferroelectric and dielectric properties.  相似文献   

2.
Interactions between grain boundaries and domain walls were extensively studied in ferroelectric films and bicrystals. This knowledge, however, has not been transferred to polycrystalline ceramics, in which the grain size represents a powerful tool to tailor the electromechanical and dielectric response. Here, we relate changes in dielectric and electromechanical properties of a bulk polycrystalline Pb(Zr0.7Ti0.3)O3 to domain wall interactions with grain boundaries. Samples with grain sizes in the range of 3.9–10.4 μm were prepared and their microstructure, crystal structure, and dielectric/electromechanical properties were investigated. A decreasing grain size was accompanied by a reduction in large-signal electromechanical properties and an increase in small-signal relative permittivity. High-energy diffraction analysis revealed increasing microstrains upon decreasing the grain size, while piezoresponse force microscopy indicated an increased local coercive voltage near grain boundaries. The changes in properties were thus related to strained material volume close to the grain boundaries exhibiting reduced domain wall dynamics.  相似文献   

3.
Beyond target diameters of 100 mm, multi-target reactive sputtering becomes a promising technology for ferroelectric thin film deposition. The main advantages of multi-target sputtering technology are: (i) thin films with precise composition control, (ii) stoichiometric variations on the target surface during repeated use are prevented by target preconditioning and operation in the metallic mode, and (iii) higher deposition rate due to sputtering from metals in the metallic mode. The latter requires a much greater precision in control of the partial pressure of oxygen, e.g., by a plasma emission monitor. In this work, Pb(Zr,Ti)O3 thin film deposition on 150 mm silicon wafers by an industrial system is demonstrated. This technology can be easily scaled-up for larger silicon wafers and is compatible with standard semiconductor technology. Films deposited onto ZrO2 buffer layers were polarized in-plane and they are suitable for piezoelectric MEMS application.  相似文献   

4.
Ferroelectric Pb(Zr0.52 Ti0.48)O3 thin films were prepared by sol-gel processing on the Pt/Ti/SiO2/Si(100) substrates. Effects of the concentration (0.2–0.8 M) of the starting solution (Pb/Zr/Ti= 1.1/0.52/0.48) and the sintering temperature (500–700 ‡C) on crystallinity, microstructure and electrical properties of PZT thin films were investigated. For the thin film prepared at 0.4 M starting solution, the highest crystallinity appeared at a sintering temperature of 650 ‡C. The average grain size of the PZT thin films was about 0.17 Μm. The film thickness was about 0.2 Μm. The relative dielectric constant and the dissipation factor of the film measured at 1 kHz were about 750 and 4.3%, respectively. The remnant polarization (Pr) and coercive field (Ec) of the film measured at the applied voltage of 5 V were about 49 ΜC/cm2 and 134 kV/cm, respectively.  相似文献   

5.
Ba(Zr0.3Ti0.7)O3薄膜的结构及性能   总被引:1,自引:0,他引:1  
高成  翟继卫  姚熹 《硅酸盐学报》2006,34(8):946-950
用溶胶-凝胶法分别在Pt/Ti/SiO2/Si和LaNiO3/Pt/Ti/SiO2/Si衬底上制备了锆钛酸钡[Ba(Zr0.3Ti0.7)O3,BZT]薄膜.相结构及介电性能研究表明:衬底和薄膜厚度对BZT薄膜性能具有显著影响.制备在LaNiO3/Pt/Ti/SiO2/Si衬底上的BZT薄膜具有(100)面的择优取向,其介电常数及介电损耗则随着薄膜厚度的增加而降低.对制备在Pt/Ti/SiO2/Si衬底上的BZT薄膜,在薄膜厚度低于500nm时,其介电常数随薄膜厚度增加而增加,大于500nm时又有所减小.  相似文献   

6.
Pb(Zr,Ti)O3 (PZT 30/70) and Mn-doped Pb(Zr,Ti)O3 (PMZT 30/70) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by a chemical solution deposition technique. The experiments found that the addition of Mn in PZT thin films greatly improves the ferroelectric properties of thin films. It is demonstrated that the Mn-doped (1 mol%) PZT showed fatigue-free characteristics at least up to 1010 switching bipolar pulse cycles under 10 V and excellent retention properties. The Mn-doped PZT thin films also exhibited well-defined hysteresis loops with a remnant polarization (Pr) of 34 μC/cm2 and a coercive field (Ec) of 100 kV/cm for the thickness of 300 nm. Dielectric constant and loss (tanδ) for Mn doped PZT thin films are 214 and 0.008, respectively. These figures compare well with or exceed the values reported previously. In this paper, the mechanism by which Mn influences on the ferroelectric properties of PZT thin films has also been discussed.  相似文献   

7.
《Ceramics International》2020,46(12):20284-20290
Lead-free (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BZT-BCT) possesses comparable piezoelectric constant with lead zirconate titanate (PZT), but its poor temperature electric performances stability and low Curie temperature limit its application. Here we designed composition graded BZT-BCT films with improved temperature stability of piezoelectric, ferroelectric, and dielectric performances over a wide temperature range, and the d33 reaches 21 pm/V with hysteresis loop even at 180 °C, which is far above the Curie temperature of BZT-BCT ceramic and BZT-0.5BCT film. The excellent temperature stability is ascribed to the lattice distortion and strain gradient in the grains caused by ions diffusion, and could suppress phase transition. This work could bring forward a feasible design for dielectric/piezoelectric/ferroelectric devices operating in harsh temperature environment.  相似文献   

8.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   

9.
In this work, the structural and ferroelectric properties of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (0.5BZT-0.5BCT) thin films deposited at different pulse repetition rates were studied. The films deposited at pulse repetition rate of 1 Hz display the optimum values of ferroelectric polarization and dielectric permittivity and are chosen for the investigation of resistive switching and photovoltaic studies. The Pt/0.5BZT-0.5BCT/ITO capacitors show the electroforming free resistive switching (RS) and is explained based on the polarization modulation of the Schottky barrier at the 0.5BZT-0.5BCT/ITO interface. Furthermore, it is shown that the RS ratio and switching voltage can be tuned with white light illumination. The capacitors display photovoltaic effect with the open circuit voltage ≈0.8 V and the short circuit current density ≈72.6 μAcm−2. The photovoltaic efficiency is found to be ≈0.010% and is greater than that of other perovskite ferroelectric thin films. The underlying mechanism for enhanced RS and photovoltaic effects is highlighted.  相似文献   

10.
The pressure-driven force-electric conversion materials with extremely rapid response time have been widely used in mining, defense, and energy areas. The discharge process by the force-electric conversion effect in ferroelectrics is dominated by polar-nonpolar phase transformation. In this work, (Pb0.985La0.01)(ZrxTi1-x)O3 (PLZT, x = 0.85–0.94) ceramics is designed by tunning Zr4+/Ti4+ ratio and aliovalent La doping to achieve high remnant polarization (Pr) and excellent temperature stability. We focus on the pressure-driven depolarization in PLZT ceramics, and their corresponding phase structure, ferroelectric properties, dielectric properties, and thermal depolarization. In PLZT (x = 0.93) ceramics, the original polarization P0 increases to 43.42 μC/cm2. The pressure-driven depolarization releases 37.66 μC/cm2 with the depolarization proportion of 86.73%, which is attributed to irreversible ferroelectric-antiferroelectric phase transition. It also exhibits excellent temperature stability up to 120°C (> 36 μC/cm2). This work provides a high-performance alternative to Pb(Zr0.95Ti0.05)O3 and guidance for the development of pulse power energy conversion devices.  相似文献   

11.
Magnetoelectric (ME) property modulation in heterostructured (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 (NZFO/Pt/PZT) thin films on platinized Si substrate by thermal annealing condition variation was studied. In an attempt to prevent interfacial reaction between NZFO and PZT layers during high temperature annealing, thin Pt layer was deposited which can serve as inter-diffusion barrier as well as electrode. The ferroelectric, magnetic, and ME properties of the heterostructured film were noticeably modulated due to microstructural evolution and clamping relaxation developed during thermal annealing process. Room temperature ME voltage coefficient of the heterostructured thin films was enhanced with increasing annealing temperature and reached to 29 mV/cm·Oe when annealed at 650 °C.  相似文献   

12.
《Ceramics International》2019,45(16):20046-20050
(Pb0.92La0.08)(Zr0.65Ti0.35)O3 (PLZT), PbZrO3 (PZO) films, and type A and type B PLZT/PZO multilayer thin films were deposited on Pt(111)/TiOx/SiO2/Si substrates by sol-gel method, where type A and type B films stand for PLZT/PZO/PLZT/PZO/PLZT/PZO and PLZT/PZO/PLZT/PLZT/PZO/PLZT multilayer thin film, respectively. Compared to the PLZT and PZO film, enhanced breakdown field strength and improved energy storage density were obtained in type A and B multilayer thin films. A superior energy storage density of 29.7 J/cm3 with the energy storage efficiency of 50.8% was achieved in type B multilayer thin film, corresponding to 81% enhancement compared with the energy storage density of PLZT films (16.4 J/cm3). Additionally, the type B multilayer thin film exhibits a good thermal stability up to 160 °C and excellent fatigue endurance after 107 charging-discharging cycles. The enhanced energy storage performance of type B multilayer thin film shows promise and may stimulate further researches on energy storage applications of multilayer dielectric thin films.  相似文献   

13.
《Ceramics International》2020,46(2):1281-1296
Pb(Zr,Ti)O3 (PZT) ferroelectric ceramic films exhibit highly superior ferroelectric, pyroelectric and piezoelectric properties which are promising for a number of applications including non-volatile random access memory devices, non-linear optics, motion and thermal sensors, tunable microwave systems and in energy harvesting (EH) use. In this research, a thin layer of PZT was deposited on two different substrates of Strontium Titanate (STO) and Strontium ruthenate (SRO) by powder magnetron sputtering (PMS) system. The preliminary powders, consisting of PbO, ZrO2 and TiO2, were manually mixed and placed into the target holder of the PMS. The deposition was performed at an elevated temperature reaching up to 600 °C via a ceramic heater. This high temperature is required for PZT thin film crystallinity, which is never achieved in conventional physical vapour deposition processes. The phase structure, crystallite size, stress-strain and surface morphology of deposited thin films were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The composition of the PZT thin films were also analysed by X-ray photoelectron spectroscopy (XPS). The mechanical properties of the thin films were evaluated with micro-scratch adhesive strength and micro hardness equipment. FESEM results showed that the PZT thin films were successfully deposited on both SRO and STO substrates. The surfaces of the coated samples were free from cracks, relatively smooth, uniform and dense. The profile of X-ray diffraction confirmed the formation of single-c-domain/single crystal perovskite phase grown on both substrates. The XPS analysis have shown that the PZT thin film grown by this method and that a target of PZT+10% PbO is a proper target for growing nominal PZT thin films. The adhesion strength and micro hardness results have confirmed the stability and durability of the thin film on the substrates, although higher values have been reported for thin film of PZT deposited on SRO surfaces.  相似文献   

14.
Polycrystalline bilayer thin film of multiferroic [Ba(Zr0.2Ti0.8)O3‐0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4([BZT‐0.5BCT]/CFO) has been deposited on Pt/Si (100) substrate using a pulsed laser deposition technique. The dielectric analysis reveals a significant change in the dielectric constant (~39% at a typical frequency of 100 Hz) at room temperature when a magnetic field is applied, in addition to a substantial improvement in the saturation polarization. A low leakage current density (~ 5 × 10?7 A/cm2) and a high magnetoelectric coupling coefficient (αE) both in the transverse (~2.085 V/Oe cm) as well as in the longitudinal (~0.708 V/cm Oe) directions, indicate in‐principle usability of this system for multifunctional device applications in thin film form.  相似文献   

15.
研究了Zr/Ti摩尔比对两步法合成的0.3Pb(Fe1/2Nb1/2)O3–0.7Pb(ZrxTi1-x)O3(PFNZxT1-x)复合热释电陶瓷微观结构、相构成和综合电学性能的影响。结果表明,所制备的陶瓷样品均为单一钙钛矿结构。在x=0.50处出现四方、菱方相共存的准同型相界。随着Zr/Ti摩尔比增加(x从0.50增至0.95),逐渐从两相共存变为菱方相,同时伴随晶胞体积和陶瓷晶粒尺寸的不断增大。随x增加,体系介电常数减小,介电损耗变化较小,而体系热释电系数及优值呈现出逐渐增大趋势。当Zr/Ti摩尔比在富锆的80/20~85/15之间时,材料室温热释电系数p大于11×10-8 C/(cm2·K1),探测率优值FD大于16×10-5 Pa-1/2,具有较好的综合电学性能。  相似文献   

16.
Pulse power energy conversion materials with ultrafast discharge processes and ultrahigh power densities have been widely used in the defense, energy, medical, and mining fields. The pressure-driven depolarization in ferroelectric materials is significant and accounts for the discharge processes. In this study, we focus on pressure-induced depolarization in (Pb1-1.5xLax)(Zr0.80Ti0.20)O3 (PLZT) (x = 0-0.07) ceramics, and their corresponding phase structure, dielectric properties, ferroelectric properties, and thermal depolarization performances. Although a satisfactory pulse power energy conversion performance has been achieved in Pb(Zr0.95Ti0.05)O3 materials, poor temperature stability negatively influences their application. The static charge densities of PLZT (x = 0.04, 0.06) decreased from 29.11 μC/cm2 and 31.53 μC/cm2 to 19.76 μC/cm2 and 6.56 μC/cm2 under 400 MPa hydrostatic pressure, respectively, which is attributed to a pressure-driven ferroelectric-antiferroelectric phase structural transition. In particular, the temperature stability of PLZT (x = 0.06) materials is up to 87°C. This study may guide the further development pulse power energy conversion devices.  相似文献   

17.
Glass additive BaO-SrO-TiO2-Al2O3-SiO2-BaF2 is employed to enhance the microstructures and energy storage properties of the Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics. To clarify the energy storage mechanism, the charge transportation and polarization process are investigated by thermally simulated depolarization current (TSDC). The dielectric breakdown strength increases from 4.3?kV/mm to 10.8?kV/mm for BZT-0.15BCT ceramics with 11?wt% glass additives, indicating that glasses could refine the grain size, uniform the structure, and decrease defects. Due to the micro-domain region, dielectric relaxation behavior is observed with a broadened and reduced dielectric constant peak at a large dielectric constant of about 3000?at room temperature. The largest charge energy density of 1.45?J/cm3 and discharge density of 0.17?J/cm3 are achieved for BZT-0.15BCT glass ceramics with 7?wt% glass additives. TSDC results demonstrate that dipole origin movement and charge transportation have an important effect on the dielectric properties and dielectric breakdown strength, respectively, which are largely influenced by the defects distribution state at the interfaces. Moderate domain walls could restrain the defects to inhibit the charge transportation and are harmful for the dielectric properties inversely. To achieve excellent energy storage performance, moderate domain walls are compromise of slightly degrading dielectric properties and greatly improving dielectric breakdown strength.  相似文献   

18.
《Ceramics International》2020,46(6):7198-7203
To investigate the effect of Sm doping on the electrical properties of Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 40, 50, 60) ceramics, three Sm-modified ceramics were prepared using the conventional solid-state reaction method. Related electrical measurements, including ferroelectric and dielectric investigations and impedance spectroscopy, were recorded for these ceramics. It was found that a tilted morphotropic phase boundary resulted from the addition of Sm, which induced the best piezoelectric properties and insulating behaviour in the Sm-BZT-60BCT sample. An abnormal P-E loop shrinkage appeared in the Sm-BZT-50BCT sample but not in the other two samples. This could be attributable to the different electronegativities between Ca2+ and Ba2+ and between Zr4+ and Ti4+, whose contents are different in varied samples and have an effect on defect-dipole alignment as well as spontaneous polarization. The activation energies for the bulk conductivity in the three composites were calculated to be 0.28 ± 0.01, 0.08 ± 0.01, and 0.36 ± 0.01 eV, confirming the existence of oxygen vacancies in our samples. The Sm dopant is responsible for the oxygen vacancies. This also leads to an increased Curie temperature in the three composites.  相似文献   

19.
《Ceramics International》2020,46(8):12080-12087
(1-x) Ba(Zr0.2Ti0.8)O3-x Na0.5Bi0.5TiO3 (x = 0, 10, 20 30, 40, 50 mol%) (BZTN) ceramics are prepared by the traditional solid phase method. All BZTN ceramics exhibit a pseudo-cubic BZT based perovskite structure. Both the average grain size and the relaxor ferroelectricity of BZTN ceramics gradually increase with increasing NBT content. The Wrec of 3.22 J/cm3 and η of 91.2% is obtained for the BZTN40 ceramic at 241 kV/cm. BZTN40 ceramic also exhibits good temperature stability from room temperature to 150 °C and frequency stability from 1 Hz to 100 Hz. A PD of 0.621 J/cm3 and a t0.9 of 82 ns is obtained for the BZTN40 ceramic at 120 kV/cm. BZTN ceramics show application potential in energy storage and pulse power capacitors.  相似文献   

20.
The piezoelectric properties of (1-x-y)PbZrO3-xPbTiO3-yPb(Ni1/3Nb2/3)O3 ceramics were investigated. Specimens with a large Pb(Ni1/3Nb2/3)O3 content, which have compositions close to the triple point, show small g33 and d33 × g33 values because of their large εT330. These values increased with a decrease in y (amount of Pb(Ni1/3Nb2/3)O3) and the specimen with x = 0.39 and y = 0.29 showed the largest g33 of 43 × 10−3 V·m/N and d33 × g33 of 25.2 × 10−12 m2/N. Cantilever-type energy harvesters were fabricated using specimens with 0.38  x  0.41 and y = 0.29. The output power densities of the energy harvesters were related to the d31 × g31 × k312 value of the piezoelectric ceramics. The energy harvester fabricated using a specimen with x = 0.39 and y = 0.29, which has a maximum d31 × g31 × k312 value, showed the maximum output power density of 1.01 mW/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号