首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transformation of calcium cyanamide and its inhibitory effect on urea nitrification was studied in some tropical soils. Three soils, from Onne, Mokwa and Samaru, representing different agro-climatological zones of Nigeria were incubated with calcium cyanamide, urea or a mixture of both for eight weeks at 30 °C and at field capacity moisture content. The recovery of inorganic N (NH 4 + plus NO 2 - plus NO 3 - )from calcium cyanamide varied from 64% to 87% in different soils. Most of the inorganic N accumulated was in NH 4 + form. Nitrification of the accumulated NH 4 + in all the soils was slow.Urea (75 mg N kg–1 soil) was completely nitrified within a week in the Samaru and Mokwa soils whereas in the Onne soil the rate of nitrification was slow. Addition of CaCN2 at the rate of 10 mg N kg–1 soil generally delayed ammonification of urea and nitrification was severely inhibited in all the soils. Addition of CaCN2 at the rate of 20 mg N kg–1 soil further reduced the ammonification of urea and completely inhibited the nitrification. High recovery of inorganic N from calcium cyanamide and its effective reduction of nitrification of urea make it suitable source of N for plants in the tropics, provided it is managed to avoid phyto-toxicity.  相似文献   

2.
The effect of Ca(OH)2 or Ca(H2PO4)2 2H2O (MCP) on potassium (K) or magnesium (Mg) leaching through and out of columns of soil with predominantly variable charge was studied. Calcium hydroxide was mixed with soil from the A and B horizon to raise the pH to about 6 or 7, and MCP, equivalent to 952 mg P, was mixed with the A horizon of each soil. Various concentrations of KCl or MgCl2 were applied as a pulse to the soil surface and leached with five pore volumes of deionised water.Calcium hydroxide or MCP addition increased leaching losses of K and Mg initially present in the soil.Liming to about pH 6 reduced leaching of applied K and Mg in all soils. This was attributed to the increase in the cation exchange capacity (CEC). Applied K leached to a greater extent at pH 7 than at pH 6 in the A horizon of each soil despite a two-fold increase in CEC. However, when Mg was applied to all soils and K applied to soil from B horizons, leaching decreased as the pH increased from 6 to about 7.The addition of MCP increased the CEC of all soils, but this had little effect on the leaching of applied K compared with the untreated soils.A proportion of applied K or Mg was displaced from the soil column for all Ca(OH)2 or MCP treatments. In many columns, no increase in exchangeable K or Mg in the lower segments of the soil column was found. Where this occurred the activity ratio in the leachate was the same as the equilibrium activity ratio.  相似文献   

3.
Soil incubation studies were undertaken in controlled environment cabinets at 15°C to investigate the effect of increasing application rates of calcium ammonium nitrate (CAN) on net nitrification in two grassland soils. Granular CAN was applied to the surface of freshly collected, moist soil, at a rate equivalent to 0, 100, 200, 400, 800 and 1600µg NH 4 + -N and NO 3 - -N per gram of oven dry soil. In half the treatments finely ground CaCO3 was incorporated into the moist soil to raise the starting pH. Changes in soil mineral N and pH were measured at weekly intervals up to six-weeks. The most probable number (MPN) technique was used to enumerate the NH 4 + -N and NO 2 - -N oxidizers at the beginning and end of the incubation.At low rates of CAN application there was considerable NH 4 + -N oxidation to NO 3 - -N during the incubation of both soils. Lime stimulated this N transformation. At high application rates (i.e. 800 and 1600 ppm) there was little change in NH 4 + -N or NO 3 - -N on either soil during the 6 week incubation, in the presence or absence of lime. The rate of NO 3 - -N produced peaked at 5.6 and 3.8 mg NO 3 - -N kg–1 d–1 on soil 1 and 2 respectively, in the presence of lime. Above a level of 400 ppm CAN (equivalent to 38 kg N ha–1) the rate of NO 3 - -N produced decreased. The higher rate of net nitrification in soil 1 compared with soil 2 was probably due to a higher number of nitrifying bacteria. Although high rates of CAN decreased the nitrifying activity of both soils there was little difference between treatments in the actual numbers of NH 4 + -N and NO 2 - -N oxidizers determined by the MPN technique.The results showed that the rate of granular CAN applied to the soil surface can influence the local activity of nitrifying bacteria and subsequent N transformations. At application rates of CAN generally used agriculturally for grass production, it is likely that net nitrification of the NH 4 + -N in the fertilizer granule will be inhibited.  相似文献   

4.
Denitrification losses were measured using the acetylene inhibition technique adapted for a coring procedure. Two soils under a cut ryegrass sward were used. One soil was a freely-drained clay loam receiving under 900 mm rainfall annually, the other soil being a poorly-drained silty clay receiving over 1100 mm rainfall annually. Swards at each site received up to 300 kg N ha–1 yr–1 of calcium ammonium nitrate (CAN), urea or a new fertiliser mixture GRANUMS (30% ammonium nitrate, 30% urea, 10% ammonium sulphate, 30% dolomite). For both soils the rate of denitrification exceeded 0.1 kg N ha–1 day–1 only when the air-filled porosity of the soil was < 30% v/v and soil nitrate was > 2 mg N kg–1 in the top 10cm of the profile and when soil temperature at 10 cm was > 4°C. When the soils dried such that their air-filled porosity was > 30% v/v, denitrification rates decreased to < 0.08 kg N ha–1 day–1. Highest rates (up to 3.7 kg N ha–1 day–1) were observed on the clay soil following application of 94 kg N ha–1 CAN to soil near field capacity in early summer 1986. Losses from CAN were approximately 3 times those from urea for a given application. Denitrification losses from the GRANUMS treatment were, overall, intermediate between those from CAN and urea but the daily losses more closely resembled those from the CAN treatment. The impeded drainage on the clay soil, where soil moisture contents remained close to field capacity throughout the year, showed denitrification losses roughly 3 times those observed on the more freely drained clay-loam for any given treatment. Over a 12-month period, N losses arising from denitrification were 29.0 and 10.0 kg N ha–1 for plots receiving 300 kg N ha–1 CAN and urea, respectively, on the well drained clay-loam and 79.0 and 31.1 kg N ha–1 respectively, for identical plots on the poorly drained clay soil. Annual denitrification losses from control plots were < 1 kg N ha–1 on both soils.  相似文献   

5.
Field experiments were conducted in the 1984 and 1985 wet seasons to determine the effect of N fertilizer application method on15N balances and yield for upland rice (Oryza sativa L.) on an Udic Arguistoll in the Philippines. The test cultivars were IR43 and UPLRi-5 in 1984 and IR43 in 1985. Unrecovered15N in15N balances for 70 kg applied urea-N ha–1, which represented N fertilizer losses as gases and movement below 0.5 m soil depth, ranged from 11–58% of the applied N. It was lowest (11–13%) for urea split applied at 30 days after seeding (DS) and at panicle initiation (PI), and highest (27–58%) for treatments receiving basal urea in the seed furrows. In all treatments with basal-applied urea, most N losses occurred before 50 DS.Heavy rainfall in 1985 before rice emergence resulted in large losses of native soil N and fertilizer N by leaching and possibly by denitrification. During the week of seeding, when rainfall was 492 mm, 91 kg nitrate-N ha–1 disappeared from the 0.3-m soil layer in unfertilized plots. Although rainfall following the basal N application was less in 1984 than in 1985, the losses from basal applied urea-N were comparable in the two years. Daily rainfall of 20–25 mm on 3 of the 6 days following basal N application in 1984 may have created a moist soil environment favorable for ammonia volatilization.In both years, highest grain yield was obtained for urea split-applied at 30 DS and at PI. Delayed rather than basal application of N reduced losses of fertilizer N and minimized uptake of fertilizer N by weeds.  相似文献   

6.
Five pot experiments were conducted with wheat and rice in a net house to study the effect of lime nitrogen (LN, contains about 55% calcium cyanamide) amendment rates on the efficiency of urea, the recovery urea-15N, the efficiency of the three nitrogen fertilizers(NF), on the efficiency of urea in the three soils, and on NO 3 - -N leaching from a flooded soil. A rate of LN-N of 5–8% of applied fertilizer N increased the recovery of labeled urea-N by 9.42%. The effect of LN on the efficiency of NF was urea > ammonium sulfate > ammonium chloride. Under flooded conditions, LN decreased NO 3 - formation and leaching.Responses of several crops to LN amended fertilizers were also studied in field experiments. At equal NPK applications, the efficiency of basal applications to rice, wheat, corn, potatoes, soybean, peanut, grapes, peaches, melon and watermelon were bette r with LN than without. Efficiency with a basal fertilizer for rice or wheat with LN were the same as with the same fertilizer without LN applied in split applications.  相似文献   

7.
The objective of this investigation was to compare the susceptibility of different ammonium containing and forming fertilizers to NH3 losses and to determine the effect of application rates on NH3 volatilization. Losses of NH3 from five fertilizers, namely (NH4)2SO4, CAN, urea, MAP and DAP were determined. The fertilizers were surface-applied to a sandy clay loam Arniston soil and a clayey Gelykvlakte soil of which the pH values were respectively 9.0 and 8.9. The application levels were equivalent to 0, 15, 30, 60, 120 and 240 kg N ha–1. After a contact period of 3 days NH3 losses were determined. Ammonia was lost from both soils under all treatments. More NH3 was lost from the clayey Gelykvlakte soil compared with the sandy clay loam Arniston soil. Loss of NH3 from the various fertilizers was ranked as follows: Urea > DAP > (NH4)2SO4 > MAP > CAN. Ammonia losses increased with increasing application rates, but the proportion of N lost, decreased. Losses of NH3 may be reduced by selective choice of fertilizer type and application rate.  相似文献   

8.
The upland fertilization practice in Africa of placing N fertilizer below the soil surface near the plant might be facilitated through use of urea supergranules (USG). Since little is known about N losses from point-placed urea on light-textured African soils, laboratory studies were conducted in a forced-draft system to determine (a) the influence of soil properties on ammonia loss from USG and (b) to compare N loss from USG with that from broadcast N sources. Ammonia loss from 1.1 g USG placed at a 4-cm soil depth ranged from 2.9 to 62% of the added N on six light-textured soils. Ammonia loss was correlated with soil clay content (r = –0.93**) but not with pH. A more detailed study on a soil from Niger revealed significantly less ammonia loss from either surfaced applied urea (18%) or surface-applied calcium ammonium nitrate (7%) than from USG placed at a 4-cm depth (67%). Amendment of surface-applied urea with 1.7% phenyl phosphorodiamidate (PPD), a urease inhibitor, essentially eliminated ammonia loss (1.9%). An15N balance confirmed that ammonia volatilization was the major loss mechanism for all N sources. The results suggest that point-placed urea may be prone to ammonia volatilization loss on light-textured African soils moistened by frequent light rainfall. In such cases, broadcast application of urea, CAN, or urea amended with PPD may be less prone to N loss.  相似文献   

9.
A comparing of urea hydrolysis and NH3 volatilization from urea supergranules and urea calcium nitrate (UCN, a new fertilizer produced by Norsk Hydro A/S, Norway) was made on two different flooded soil types, a high-CEC clay loam (Ås) and an intermediate-CEC clay loam (Kinn).Nitrogen loss by ammonia volatilization was reduced from 17% by surface application of urea supergranules (USG) on flooded Ås soil to 3% and 6% by UCN briquettes at either the same urea or nitrogen concentration as USG. A significant reduction was even found with the surface application of prilled UCN, 12% and 18% N-loss for prilled UCN and urea, respectively. The floodwater pH and NH 4 + content was lower with UCN than urea, which reduced the potential for ammonia volatilization.NH3-loss (5%) was significantly less when USG was surface applied on Kinn soil, while NH3-loss from UCN briquettes was independent of soil type. The reduction in NH3-loss from USG on Kinn soil was due to a decrease in the pH and NH 4 + content of the floodwater caused by a reduced rate of urea hydrolysis.The rate of urea hydrolysis was lower with UCN than USG in both soils, but the difference between UCN and USG was greater in the Ås soil than in the Kinn soil. Three days after deep placement (10 cm), 18% of UCN urea and 52% of USG urea were hydrolyzed in Ås soil, while only 12% UCN and 17% USG were hydrolyzed in the Kinn soil.The surface application of USG on flooded soil reduced the rate of urea hydrolysis as compared to deep placement. 30% and 17% of USG urea was hydrolyzed after four days on Ås and Kinn soil, respectively. During the first few days the rate of hydrolysis of UCN was more affected by the soil type than the application method. Four days after surface application 32% and 13% UCN urea was hydrolyzed on Ås and Kinn soil, respectively. The rate of urea hydrolysis exhibited a zero-order reaction when USG and UCN-briquettes were point placed in flooded soils.  相似文献   

10.
Three factorial experiments with four replications were conducted in a greenhouse to examine the effectiveness of gypsum, elemental sulfur (ES powder) and three S containing N fertilizers, viz., ammonium sulfate (AS), urea + ES, and Ureas (20% AS and 80% urea). All experiments were conducted twice in different years.In the first experiment with uncropped soil, the effects of soil type, leaching rate (2.3 and 6.9 mm water per day) and urea addition on sulfate leaching losses were studied. Leaching losses decreased in the order Ureas > ammonium sulfate (AS) > gypsum urea + ES. Increasing the leaching rate greatly increased sulfate losses from both soils. Losses were greater in the sandy Typic Hapludoll than in the clayey Oxic Paleustalf. Sulfate adsorption was found to decrease strongly with rising the pH in both soils. Hydrolysis of urea temporarily raised the pH of the soil, thereby increasing the sulfate leaching losses.In the second experiment the effects of S rate (0–65 mg per kg soil), split application and leaching rate (0 and 2.3 mm per day) on sulfate leaching losses and apparent S recovery (ASR) by three successive cuts of ryegrass (Lolium perenne L.) were studied. Herbage yield more than doubled when S was applied. The effectiveness of the sulfate fertilizers was greater when S was split-applied than given all at once. With split applications the ASR decreased in the order: Ureas > AS > gypsum > urea + ES > ES powder. ES fertilizers were least effective, because the oxidation rate of ES to sulfate was clearly too slow.In the third experiment the effects of S rate (0–40 mg per kg soil) and split application on sulfate leaching losses and ASR in the grain of wheat (Triticum aestivum L.) were studied under leaching conditions (2.3 mm per day). Grain yield increased strongly due to S application. Split application greatly increased the effectiveness of the sulfate fertilizers and appeared to be an effective tool in satisfying the S need of the crop under leaching conditions. Again, ES fertilizers were least effective, because the oxidation rate of ES was too slow to meet the S demand of the crop.In all experiments leaching losses of sulfate from the ES fertilizers were smaller than from the sulfate fertilizers.  相似文献   

11.
Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P < 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P < 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.  相似文献   

12.
Leaching losses of urea-N applied to permeable soils under lowland rice   总被引:1,自引:0,他引:1  
Application of 120 kg urea-N ha–1 to lowland rice grown in a highly percolating soil in 10 equal split doses at weekly intervals rather than in 3 equal split doses at 7, 21 and 42 days after transplanting did not significantly increase rice grain yield and N uptake. Results suggest that leaching losses of N were not substantial. In lysimeters planted with rice, leaching losses of N as urea, NH 4 + , and NO 3 - beyond 30 cm depth of a sandy loam soil for 60 days were about 6% of the total urea-N and 3% of the total ammonium sulphate-N applied in three equal split doses. Application of urea even in a single dose at transplanting did not result in more N leaching losses (13%) compared to those observed from potassium nitrate (38%) applied in three split doses. Nitrogen contained in potassium nitrate was readily leached during the first week of its application. More N was lost from the first dose of N applied at transplanting than from the second or third dose. Data pertaining to yield, N uptake and per cent N recovery by rice revealed that the performance of different fertilizer treatments was inversely related to susceptibility of N to leaching.  相似文献   

13.
The application of nitrogen in a soil under agricultural production is subject to several pathways including de-nitrification, leaching and recovery by an annual crop. This is as well greatly influenced by the management practices, nitrogen source and soil conditions. The main objective of this study was to investigate the loss of nitrogen (N) through nitrous oxide (N2O) emissions and mineral N leaching and uptake by annual crop as influenced by the N source. The study was carried out at Kabete in Central Kenya. Measurements were taken during the second season after two seasons of repeated application of N as urea and Tithonia diversifolia (tithonia) leaves. Results obtained indicated that nitrous oxide (N2O) emissions at 4 weeks after planting were as high as 12.3 μg N m −2 h−1 for tithonia treatment and 2.9 μg N m−2 h−1 for urea treatment. Tithonia green biomass treatment was found to emit N2O at relatively higher rate compared to urea treatment. This was only evident during the fourth week after treatment application.Soil mineral N content at the end of the season increased down the profile. This was evident in the three treatments (urea, tithonia and control) investigated in the study. Urea treatment exhibited significantly higher mineral N content down the soil profile (9% of the applied N) compared to tithonia (0.6% of the applied N). This was attributed to the washing down of the nitrate-N from the topsoil accumulating in the lower layers of the soil profile. However, there was no significant difference in N content down the soil profile between tithonia treatment and the control. It could be concluded that there was no nitrate leaching in the tithonia treatment. Nitrogen recovery by the maize crop was higher in the urea treatment (76% of the applied N) as compared to tithonia treatment (55.5% of the applied N). This was also true for the residual mineral N in the soil at the end of the season which was about 7.8% of the applied N in the urea treatment and 5.2% in the tithonia treatment.From this study, it was therefore evident that although there is relatively lower N recovery by maize supplied with tithonia green biomass compared to maize supplied with urea, more nitrogen is being lost (through leaching) from the soil–plant system in the urea applied plots than in tithonia applied plots. However, a greater percentage (37.8%) of the tithonia-applied N could not be accounted for and might have been entrapped in the soil organic matter unlike urea-applied N whose greater percentage (92%) could be accounted for.  相似文献   

14.
Beta-cyclodextrin (-CD) complexes of CODPtX 2 (COD=1.5-cyclooctadiene.X=Cl, Br, and I) have been prepared and employed as hydrosilylation catalysts. When used in cross-linkable, silicone-containing systems, these catalysts provide a long shelf stability at ambient temperature but cure rapidly at elevated temperature. These systems thus have the property of command-cure. Extensive analytical investigations were undertaken to develop reproducible synthetic methodology for the preparation of inclusion compounds free of surface contamination of the guest platinum compound. Water plays a key role in the synthesis of such platinum inclusion compounds. Dried -CD CODPtX 2 compounds can be washed with organic solvent to remove residual uncomplexed CODPtX 2, while organic solvent washing of wet inclusion compounds results in removal of the guest from the -CD cavity. Examination of these catalysts in curable silicone systems is described.  相似文献   

15.
Ammonia (NH3) volatilization losses from simulated sheep urine patches in a perennial ryegrass (Lolium perenne L.)/white clover (Trifolium repens L.) pasture in New Zealand were measured in the field during the summer, autumn and winter periods. An enclosure technique was used with microplots (23 cm diameter) receiving either sheep urine or aqueous urea at rates equivalent to 500 kg N ha–1 and monitored continuously until measured losses decreased to 0.5% per day. Mean volatilization losses for urine treated plots were 22.2% of the applied N in summer, 24.6% in autumn and 12.2% in winter. Corresponding losses for the urea treated plots were 17.9%, 28.9% and 8.5%. Differences between these two N sources were not significant although the seasonal differences were significant (P 0.05). Changes in NH3 gas fluxes were found to be related to measured changes in soil pH and air temperature. Two repeated applications of urine or aqueous urea to the same microplot resulted in significantly greater subsequent volatilization losses averaging 29.6% from the second and 37.5% from the third application.Most of the applied N was accounted for as either soil mineral N (NH 4 + + NO 3 - + NO 2 - ) or NH3(g) . Urea hydrolysis was rapid and obeyed the first order kinetics during the 24 hours following application. Calculated half-lives of urea in urine and aqueous urea were significantly different and were 3.0 and 4.7 h respectively during the summer and 4.7 and 12.0 h during the autumn.Implications of the results obtained to practical field situation together with the efficacy of the enclosure technique for measuring volatilization losses are discussed.  相似文献   

16.
The frequency distributions of soil NO 3 - and NH 4 + concentrations under grazed and ungrazed grassland were found to be lognormal, irrespective of time of year or soil depth. The variance and skewness of the sample values increased with stocking density and use of N fertilizer. An analysis of the spatial dependence of the variability using the semivariogram showed a high nugget variance, even when three sample values from each sampling point were averaged. Most of the variance was therefore short-range (occurring within a distance of 0.4 m), suggesting that the sample volume for soil mineral N measurement should be as large as is practicably possible. As an estimate of the average mineral N content, the geometric mean of the sample values consistently underestimated the true arithmetic mean of the population from which the same was drawn. The conventional estimate of the arithmetic mean for lognormally distributed samples values was satisfactory when the sample number was > 50 and the (log) variance < 0.75 (µg N cm–3). However, for data with larger variances, high coefficients of skewness and fewer observations, Sichel's estimator was a more efficient measure of the true population mean.  相似文献   

17.
To assess the influence of varying soil water and soil air contents on ammonia volatilization from surface applied urea, a mechanistic model is used to simulate the system. The results are discussed in terms of the effects of soil-water-air dynamics on the movement of urea, ammoniacal-nitrogen and soil base, and on the rate of urea hydrolysis, and their influence on ammonia volatilization. Changing the soil moisture between 90% and 125% of field capacity did not have a marked influence on ammonia volatilization. The predicted losses were at their minimum with a moisture content slightly above field capacity, and increased sharply as the soil moisture fell below 90% of the field capacity. Ammonia volatilization losses measured by experiment at differentf values agreed very well with those predicted by the model. The relative contribution of the liquid pathway over the gaseous pathway of movement of NH3 through soil increased with increase inf, and, at a givenf, decreased with increase in the pH.  相似文献   

18.
Ammonium transformation in paddy soils affected by the presence of nitrate   总被引:4,自引:0,他引:4  
Coupled nitrification and denitrification is considered as one of the main pathways of nitrogen losses in paddy soils. The effect of NO3 on NH4 + transformation was investigated by using the 15N technique. The paddy soils were collected from Wuxi (soil pH 5.84) and Yingtan (soil pH 5.02), China. The soils were added with either urea (18.57 mol urea-N enriched with 60 atom% 15N excess) plus 2.14 mol KNO3-N (natural abundance) per gram soil (U+NO3) or urea alone (U). The KNO3 was added 6 days after urea addition. The incubation was carried out under flooded condition in either air or N2 gas headspace at 25°C. The results showed that in air headspace, 15NH4 + oxidization was so fast that about 10% and 8% of added 15N in the treatment U could be oxidized during the incubation period of 73 hours after KNO3 addition in Wuxi and Yingtan soil, respectively. The addition of KNO3 significantly inhibited 15NH4 + oxidation (p<0.01) in air headspace, while it stimulated 15NH4 + oxidation in N2 gas headspace, although the oxidation was depressed by the N2 gas headspace itself. Therefore, the accumulation of NO3 would inhibit further nitrification of NH4 + at micro-aerobic sites in paddy soils, especially in paddy soils with a low denitrification rate. On the other hand, NO3 would lead to oxidation of NH4 +in anaerobic bulk soils.  相似文献   

19.
Interactions between15N-labelled fertilizers applied at concentrations representative of the fertilizer microsite and the solubility of the nitrogenous component of soil organic matter were investigated in laboratory experiments. Soil organic N was solubilized in a-irradiated soil due to addition of NH3(aq), and the fertilizer-induced loss of unlabelled total N in the extracted soil (TUs) increased with increasing N fertilizer concentration and soil pH. TUs was linearly correlated with ammoniacal-N concentration and the pH of the fertilized soil within the range of 7.5-10 (r = 0.94).Total organic N in the soil extract (OTe) increased rapidly up to day 14 following addition of 2000 mg urea-N kg–1 soil, but was then stable up to day 28. OTe of a range of soils increased from between 5 and 148 to between 15 and 368 mg N kg–1 soil after application of 1045 mg NH3-N kg–1 soil. While up to 25% of the organic N was solubilized by the fertilizer in nine soils, the change in total organic N in the extracts (OTe) of three soils was not significant. The highest OTe of 399 mg N kg–1 soil (35.4% of soil organic N) was measured after application of 2000 mg NH3-N kg–1 soil.pH and OTe decreased in the order of NH3(aq) > urea > di-ammonium phosphate > ammonium sulphate at equivalent rates of N addition. A negative OTe was measured following application of ammonium sulphate. OTe was correlated with the pH of the fertilized soil but not ammoniacal-N concentration for different N fertilizer sources.  相似文献   

20.
Effect of urine volume on nitrate leaching in the northeast USA   总被引:2,自引:0,他引:2  
To investigate how the urine volume (i.e. size of cow) affects how much NO3-N is leached from a urine deposition in the climatic conditions of the northeast USA, a field study using large drainage lysimeters to measure NO3-N leaching loss from synthetic urine applied in spring, summer and fall in 1-, 2-, and 3-l volumes to an orchardgrass (Dactyls glomerata L., c.v. Pennlate) sward was conducted from April 1997 to March 1999. The study site was located in central Pennsylvania on a Hagerstown silt loam soil (fine, mixed, mesic Typic Hapludalf). It was found that increasing urine volume increased the amount of urine N leached but had no significant effect on the apparent percent of urine N leached. The apparent percent of urine N leached was 25% averaged over all treatment times and volumes and was 21% for spring and summer applied urine and 32% for fall applied urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号