首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated concentrations of atmospheric CO2 are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant–herbivore interactions. We evaluated the independent and interactive effects of enriched CO2 and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). We grew aspen and maple seedlings in ambient (~360 ppm) and enriched (650 ppm) CO2 environments at the University of Wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50% defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO2 altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. We found no significant interactions between CO2 and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO2 treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance of insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO2-enriched world.  相似文献   

2.
Reception and adaptation of antennal receptors in response to (+)-disparlure [(+)-D], the sex attractant pheromone of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae)], its enantiomer, (?)-D, and analogs of disparlure in which the epoxide group is replaced with various three-membered rings [(±)-cyclopropyl (2HC), (±)-difluorocyclopropyl (2FC), (±)-dichlorocyclopropyl (2ClC), and (±)-aziridinyl (AZ), (+)-AZ, and (?)-AZ] as well as a mixture of 1,1-epoxy analogs were investigated using electroantennograms. Antennal receptors of male moths were more responsive (5 μg stimulus load) to (+)-D than to (?)-D; while responses to each of the analogs were significantly, less and did not differ from each other. Antennal receptors of female moths did not respond significantly to any of the compounds at this stimulus load. Dose–response curves revealed greater sensitivity of male antennae to (+)-D than (?)-D. Among the cyclopropane analogs and 1,1-epoxy mixture (1,1E), the order of sensitivity was: 2FC > 2ClC > 2HC > 1,1E. Antennae were least sensitive to the aziridinyl analogs; however, (+)-AZ was more active than (?)-AZ, while an intermediate response was elicited by the racemate. Males exposed to (+)-D adapted to (+)-D, while responses to (+)-D were not significantly affected by exposure to (?)-D, 2FC or (+)-AZ. After exposure to hexylacetate, males showed adaptation to (+)-D or (?)-D, but not to the other odorants. Preliminary field data correlate well with knowledge obtained in our electrophysiological studies and demonstrate the usefulness of such studies. These results indicate that novel approaches to the design and synthesis of potential agonists of disparlure receptors are necessary before substantial effects on the activity of disparlure are realized.  相似文献   

3.
The performance of gypsy moths (Lymantria dispar) feeding on quaking aspen (Populus tremuloides) is strongly influenced by host foliar chemistry and susceptibility to a nuclear polyhedrosis virus (LdNPV), but the relationship of susceptibility to chemistry is poorly understood. We investigated the effects of genetic and resource-mediated variation in phytochemistry on viral pathogenicity. Trees were grown in pots in a common garden. Disks were punched from aspen leaves, inoculated with LdNPV and fed to third instars. Additional leaves were analyzed for levels of nitrogen, starch, phenolic glycosides, and condensed tannins. Despite marked variation among trees in levels of phenolic glycosides and tannins, we observed minimal variation in larval susceptibility to LdNPV. Viral pathogenicity was only weakly (inversely) correlated with tannin concentrations in one of two experiments. These results suggest that differential defoliation of aspen by gypsy moths in the field is due to the direct effects of host chemistry on larval performance rather than to the indirect effects of host chemistry on efficacy of this natural enemy.  相似文献   

4.
This study investigated the consequences of early season bud herbivory on host-plant phytochemistry and subsequent effects on a later mid-season leaf-feeding herbivore, to test the hypothesis that temporally segregated interguild interactions could affect herbivore success through plant-mediated responses. Our system consisted of American bass wood, Tilia americana, a bud-feeding thrips species, Thrips calcaratus, and the folivorous gypsy moth, Lymantria dispar. The impact of thrips bud-feeding on American basswood foliar chemistry and subsequent effects on gypsy moth larval preference and performance were measured. Foliar total nonstructural carbohydrates increased and phenolic levels decreased in response to bud injury, which affected larval feeding preference. In a two-choice test, gypsy moth larvae preferred leaf discs with high carbohydrate and low phenolic levels. The effects on larval performance depended on the extent of prior bud injury and were correlated with carbohydrate concentrations. In an early season assay, larval performance was lowest on moderately bud-damaged tissue, which also had the lowest total nonstructural carbohydrates. In a mid-season assay, larval performance and carbohydrate concentrations were highest in severely bud-damaged foliage. Foliar phenolics were highest in severely bud-damaged tissue in the early season assay, and in moderately damaged tissue in the mid-season assay. Gypsy moth performance was not correlated with foliar phenolic levels. Secondary (reflushed) foliage had higher carbohydrate levels than did primary (original) foliage, which correlated with increased larval performance. This study illustrates that bud-feeding herbivores can alter the phytochemistry and subsequent suitability of host-plant foliage for later folivores. The implications of these results to interactions between feeding guilds, community structure, and forest health are discussed.  相似文献   

5.
We measured total peroxidase activity and the activities of peroxidase isoforms in leaves of red oak (Quercus rubra L.) seedlings exposed to wounding and plant hormones in the greenhouse. Activity of specific peroxidase isoforms was induced differentially by gypsy moth wounding, mechanical wounding, and the wound-associated plant hormone jasmonic acid. Activity of one isoform was enhanced modestly by treatment with salicylate. A study of peroxidase activity in naturally occurring galls elicited on red oak leaves by 12 hymenopteran and dipteran insect species found 16 POD isoforms, 11 of which were differentially induced or suppressed in galls compared with leaves. In both studies, total peroxidase activity as measured spectrophotometrically was not clearly related to activity of these isoforms. These results indicate that red oak seedlings and trees may respond specifically to wounding, particular insects, and plant signals through changes in the activities of individual isozymes.  相似文献   

6.
The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.  相似文献   

7.
The current obesity pandemic has been expanding in both developing and developed countries. This suggests that the factors contributing to this condition need to be reconsidered since some new factors are arising as etiological causes of this disease. Moreover, recent clinical and experimental findings have shown an association between the progress of obesity and some infections, and the functions of adipose tissues, which involve cell metabolism and adipokine release, among others. Furthermore, it has recently been reported that adipocytes could either be reservoirs for these pathogens or play an active role in this process. In addition, there is abundant evidence indicating that during obesity, the immune system is exacerbated, suggesting an increased susceptibility of the patient to the development of several forms of illness or death. Thus, there could be a relationship between infection as a trigger for an increase in adipose cells and the impact on the metabolism that contributes to the development of obesity. In this review, we describe the findings concerning the role of adipose tissue as a mediator in the immune response as well as the possible role of adipocytes as infection targets, with both roles constituting a possible cause of obesity.  相似文献   

8.
9.
In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.  相似文献   

10.

Fluorescent analogues of the gypsy moth sex pheromone (+)-disparlure (1) and its enantiomer (?)-disparlure (ent-1) were designed, synthesized, and characterized. The fluorescently labelled analogues 6-FAM (+)-disparlure and 1a 6-FAM (?)-disparlure ent-1a were prepared by copper-catalyzed azide-alkyne cycloaddition of disparlure alkyne and 6-FAM azide. These fluorescent disparlure analogues 1a and ent-1a were used to measure disparlure binding to two pheromone-binding proteins from the gypsy moth, LdisPBP1 and LdisPBP2. The fluorescence binding assay showed that LdisPBP1 has a stronger affinity for 6-FAM (?)-disparlure ent-1a, whereas LdisPBP2 has a stronger affinity for 6-FAM (+)-disparlure 1a, consistent with findings from previous studies with disparlure enantiomers. The 6-FAM disparlure enantiomers appeared to be much stronger ligands for LdisPBPs, with binding constants (Kd) in the nanomolar range, compared to the fluorescent reporter 1-NPN (which had Kd values in the micromolar range). Fluorescence competitive binding assays were used to determine the displacement constant (Ki) for the disparlure enantiomers in competition with fluorescent disparlure analogues binding to LdisPBP1 and LdisPBP2. The Ki data show that disparlure enantiomers can effectively displace the fluorescent disparlure from the binding pocket of LdisPBPs and, therefore, occupy the same binding site.

  相似文献   

11.
We tested whether the ectomycorrhizal (ECM) infection level of roots of silver birch (Betula pendula) affects performance of above-ground insect herbivores by increasing available plant biomass, by enhancing availability of nutrients, or by modifying concentration of defense compounds, i.e., phenolics, in birch foliage. Insect performance was determined for a phloem-feeding generalist (Lygus rugulipennis, the European tarnished plant bug), a phloem-feeding specialist (Calaphis flava, the birch aphid), and a chewing generalist (Epirrita autumnata, the autumnal moth larva). Silver birch plantlets had either natural ECM infection level (on average 24% of short roots with ECM), reduced ECM infection level with fungicide (F−, 9% ECM), or enhanced ECM infection level after inoculation with the fungus Paxillus involutus (PI+, 45% ECM) or Leccinum versipelle (LV+, 42% ECM). In general, the most pronounced effect of ECM was observed on growth of plantlets, i.e., stem growth decreased. In PI+-treated plants, leaf biomass also decreased. The effect of mycorrhizal colonization on the host plant’s nitrogen (N) and phosphorous (P) concentration was dependent on the mycorrhizal species and experiment. Fungicide treatment did not cause a consistent decrease in nutrients. Finally, defense of birch against herbivory, expressed as foliar phenolic concentration in plantlets, was not modified by ECM. However, E. autumnata had a significantly higher relative growth rate on PI+ plantlets with high leaf N concentration than on LV+ plantlets with low leaf N concentration. The birch aphid C. flava produced significantly less nymphs on birches with enhanced ECM infection levels (PI+ and LV+ plantlets) than on controls. In summary, our data show that the ECM infection level mainly affects the growth parameters of plantlets, whereas effects on leaf chemical quality are minor. Our data show that effects of ECM infection of birch roots on aboveground herbivores are multifaceted and depend on the fungal species forming ectomycorrhiza and also on the degree of specialization and feeding guild of insects.  相似文献   

12.
Insect damage changes plant physiology and chemistry, and such changes may influence the performance of herbivores. We introduced larvae of the autumnal moth (Epirrita autumnataBorkh.) on individual branches of its main host plant, mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) to examine rapid-induced plant responses, which may affect subsequent larval development. We measured systemic responses to herbivory by analyzing chemistry, photosynthesis, and leaf growth, as well as effects on larval growth and feeding, in undamaged branches of damaged and control trees. Larvae reared on leaves from intact branches of the herbivore-damaged trees grew faster than those reared on leaves of control trees, indicating systemic-induced susceptibility. Herbivore damage did not lead to systemic changes in levels of primary nutrients or phenolic compounds. The analyses of photosynthetic activity and individual hydrolyzable tannins revealed a reversal of leaf physiology-herbivore defense patterns. On control trees, consumption by E. autumnata larvae was positively correlated with photosynthetic activity; on damaged trees, this correlation was reversed, with consumption being negatively correlated with photosynthetic activity. A similar pattern was found in the relationship between monogalloylglucose, the most abundant hydrolyzable tannin of mountain birch, and leaf consumption. Among the control trees, consumption was positively correlated with concentrations of monogalloylglucose, whereas among herbivore-damaged trees, this correlation was reversed and became negative. Our results suggest that herbivore performance is related to both concentrations of phenolic compounds and photosynthetic activity in leaves. This linkage between herbivore performance, leaf chemistry, and physiology was sensitive to induced plant responses caused by slight herbivore damage.  相似文献   

13.
Jasmonic acid (JA) treatment of tomato plants induces several defense-related oxidative enzymes and increases pest resistance in a manner thought to simulate natural insect wounding. In a full-factorial greenhouse experiment, we examined the independent and interactive effects of plant age and exposure to wind-induced mechanical stress (MS), on the ability of JA to induce defense in tomato. In general, treatment of 4-, 6-, and 8-week-old tomato plants with 1 mM JA resulted in the induction of peroxidase and polyphenol oxidase activity and reduced the relative growth rate of first-instar Manduca sexta larvae fed treated leaves, in accordance with other studies. Peroxidase activity increased with plant age and was induced by JA most strongly in older plants. In contrast, polyphenol oxidase activity did not change with plant age and was induced by JA most strongly in young plants. While relative growth rates of M. sexta were lower on older plants overall, JA reduced growth rates most strongly in young plants, in which JA treatment enhanced polyphenol oxidase activity by more than 70%. MS enhanced the activity of peroxidase, but substantially reduced the activity of polyphenol oxidase; the latter most intensely on older plants. M. sexta tended to grow more slowly on MS-treated plants, although this effect was not significant. Thus, reduced polyphenol oxidase activity in MS-treated plants did not lead to an increase in growth rate of M. sexta, possibly because peroxidase activity was still elevated in MS-treated plants. Significant interactions between JA and MS and three-way interactions were not detected for any variable, although the inductive effects of both JA and MS interacted in complex ways with plant age. Our results indicate that resistance traits in tomato are differentially affected by JA and wind exposure and differ in their relative contribution to defense as plants age.  相似文献   

14.
15.
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.  相似文献   

16.
Coordinated sexual communication systems, seen in many species of moths, are hypothesized to be under strong stabilizing natural selection. Stabilized communication systems should be resistant to change, but there are examples of species/populations that show great diversification. A possible solution is that it is directional sexual selection on variation in male response that drives evolution. We tested a component of this model by asking whether ‘rare’ males (ca. 5 % of all males in a population) of the European corn borer moth (ECB), Ostrinia nubilalis, that respond to the sex pheromones of both ECB and a different Ostrinia species (O. furnacalis, the Asian corn borer, ACB), might play an important role in diversification. We specifically tested, via artificial selection, whether this broad male response has an evolvable genetic component. We increased the frequency of broad male response from 5 to 70 % in 19 generations, showing that broad-responding males could be important for the evolution of novel communication systems in ECB. We did not find a broader range of mating acceptance of broad males by females of the base population, however, suggesting that broad response would be unlikely to increase in frequency without the involvement of other factors. However, we found that ECB selection-line females accepted a broader range of courting males, including those of ACB, than did females of the base population. Thus, a genetic correlation exists between broad, long-range response to female sex pheromone and the breadth of female acceptance of males at close range. These results are discussed in the context of evolution of novel communication systems in Ostrinia.  相似文献   

17.
18.
Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β-defensins and cathelicidin contribute to host cutaneous defense, which prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S. aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection of the skin. In this review, we focus on host-pathogen interactions during colonization and infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that greater understanding of these mechanisms will enable development of more sustainable antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin infection and colonization.  相似文献   

19.
Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.  相似文献   

20.
A field experiment was conducted using a 3 × 3 orthogonal regression design to explore the growth promotion of one-year-old Yunnan pine seedlings (Pinus yunnanensis Franch.) in response to foliar application of IAA (indole-3-acetic acid) at rates of 0, 200 and 400 mg·L(-1) and IBA (indole-3-butyric acid) at rates of 0, 200 and 400 mg·L(-1) in order to promote the growth during the seedlings' early stage. The experiment was conducted at the Lufeng Village Forest Farm of Yiliang County in Kunming, Yunnan, China. The results showed that IAA and IBA were effective in growth promotion of Yunnan pine seedlings. The response of both growth increment and biomass accumulation to the concentration of IAA and IBA can be modeled using a bivariate surface response, and each growth index had a peak value. Growth indexes increased with the increase of the dosage of photohormones before reaching a peak value, and then decreased. The different growth indexes had various responses to the concentrations and ratio of IAA and IBA. The foliar application of IAA in combination with IBA showed the largest improvement on the biomass of the needles, followed by stems and roots. The higher ratio of IAA promoted stem diameter growth, root system development and biomass accumulation in the needles, while a higher ratio of IBA contributed to height growth and biomass accumulation in the stem. Based on the auxin effect equations on the different growth indexes and surface response, the optimum concentrations and the (IAA:IBA) ratios can be obtained. The optimum concentrations of IAA and IBA were 167 and 186, 310 and 217, 193 and 159, 191 and 221, and 206 and 186 mg·L(-1), with corresponding ratios of 1:1.11, 1:0.70, 1:0.82, 1:1.15 and 1:0.90, respectively, at the maximum seedling height and collar diameter growth as well as biomass accumulation at the root, stem and needle. The above growth indexes were 22.00%, 79.80%, 48.65%, 82.20% and 107.00% higher than the control treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号