首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes a novel routing algorithm for constructing a container of width n − 1 between a pair of vertices in an (n, k)-star graph with connectivity n − 1. Since Lin et al. [T.C. Lin, D.R. Duh, H.C. Cheng, Wide diameter of (n, k)-star networks, in: Proceedings of the International Conference on Computing, Communications and Control Technologies, vol. 5, 2004, pp. 160-165] already calculated the wide diameters in (n, n − 1)-star and (n, 1)-star graphs, this study only considers an (n, k)-star with 2 ? k ? n − 2. The length of the longest container among all constructed containers serves as the upper bound of the wide diameter of an (n, k)-star graph. The lower bound of the wide diameter of an (n, k)-star graph with 2 ? k ? ⌊n/2⌋ and the lower bound of the wide diameter of a regular graph with a connectivity of 2 or above are also computed. Measurement results indicate that the wide diameter of an (n, k)-star graph is its diameter plus 2 for 2 ? k ? ⌊n/2⌋, or its diameter plus a value between 1 and 2 for ⌊n/2⌋ + 1 ? k ? n − 2.  相似文献   

2.
Indium oxide (In2O3) doped with 0.5-5 at.% of Ba was examined for their response towards trace levels of NOx in the ambient. Crystallographic phase studies, electrical conductivity and sensor studies for NOx with cross interference for hydrogen, petroleum gas (PG) and ammonia were carried out. Bulk compositions with x ≤ 1 at.% of Ba exhibited high response towards NOx with extremely low cross interference for hydrogen, PG and ammonia, offering high selectivity. Thin films of 0.5 at.% Ba doped In2O3 were deposited using pulsed laser deposition technique using an excimer laser (KrF) operating at a wavelength of (λ) 248 nm with a fluence of ∼3 J/cm2 and pulsed at 10 Hz. Thin film sensors exhibited better response towards 3 ppm NOx quite reliably and reproducibly and offer the potential to develop NOx sensors (Threshold limit value of NO2 and NO is 3 and 25 ppm, respectively).  相似文献   

3.
Remote detection of the Trichodesmium spp. cyanobacteria blooms on the west Florida shelf (WFS) has been problematic due to optical complexity caused by sediment resuspension, coastal runoff, and bottom interference. By combining MODIS data measured by the ocean bands and land bands, an approach was developed to identify surface mats of Trichodesmium on the WFS. The approach first identifies possible bloom patches in MODIS FAI (floating algae index) 250 m resolution imagery derived from the Rayleigh-corrected reflectance at 667, 859, and 1240 nm. Then, spectral analysis examines the unique reflectance characteristics of Trichodesmium at 469, 488, 531, 551, and 555 nm due to specific optical properties (absorption, backscattering, and fluorescence) of the unusual pigments in Trichodesmium. These spectral characteristics (i.e., high-low-high-low-high reflectance at 469-488-531-551-555 nm, respectively) differentiate Trichodesmium mats unambiguously from other features observed in the FAI imagery, such as Sargassum spp. Tests in other coastal locations show that the approach is robust and applicable to other optically complex waters. Results shown here can help study Trichodesmium bloom dynamics (e.g., initiation and bloom formation) and may also help design future sensors to better detect and quantify Trichodesmium, an important N2 fixer in the global oceans.  相似文献   

4.
I. Ahmad 《Information Sciences》2006,176(20):3094-3103
A class of second order (Fαρd)-convex functions and their generalizations is introduced. Using the assumptions on the functions involved, weak, strong and strict converse duality theorems are established for a second order Mond-Weir type multiobjective dual.  相似文献   

5.
In this paper, we consider a ring as a universal set and study (?T)-fuzzy rough approximation operators with respect to a TL-fuzzy ideal of a ring. First, some new properties of generalized (?T)-fuzzy rough approximation operators are obtained. Then, a new fuzzy algebraic structure - TL-fuzzy rough ideal is defined and its properties investigated. And finally, the homomorphism of (?T)-fuzzy rough approximation operators is studied.  相似文献   

6.
We had previously reported the detection of a model protein bovine serum albumin (BSA) using antibody-immobilized tapered fiber optic biosensors (TFOBS) at 1310 nm and 1550 nm under stagnant and flow conditions. Because of recent interest in pathogen detection based on DNA, in this work we explore the application of these sensors for the detection of single stranded DNA (ssDNA). We show that it is feasible to directly detect the hybridization of a 10-mer ssDNA to its complementary strand immobilized on the sensor surface. Detection was performed under flow conditions because flow reduces non-specific binding to sensor surface, eliminates optical transmission changes due to mechanical movements, and allows for instantaneous switching of samples when needed.

TFOBS were fabricated with waist diameters of 5–10 μm and total lengths of 1000–1200 μm. The taper regions were coated with 50 nm of gold and housed in a specially constructed holder which served as a flow cell. The TFOBS was immobilized with 15-mer ssDNA with a C6 extension and a thiol group, which attaches to Au1 1 1 sites. Then, the complementary 10-mer ssDNA samples were allowed to flow in from low to high concentration (750 fM to 7.5 nM) and the resulting transmission changes were recorded. It is shown that 750 fM of complementary DNA can be detected. This sensor was able to distinguish between complementary DNA from DNA with a single nucleotide mismatch in the middle position.  相似文献   


7.
A needle-type water content sensor with a polyethersulfone (PES, poly(4-phenoxy-co-4-benzensulfone)) polymer membrane is proposed for the low-invasive, direct in situ measurement of plant water content (PWC). When the PWC sensor is inserted into a plant, the electrical impedance of PES is determined by the amount of absorbed water, which indicates the PWC. In situ measurement of PWC was successfully demonstrated for a strawberry plant (Fragaria × ananassa) and the application feasibility of the sensor to in situ PWC measurement for irrigation agriculture was verified.  相似文献   

8.
A stand-alone sensor system with integrated sub-systems is demonstrated. The system is portable and capable of in situ reagent-based nutrient analysis. The system is based on a low cost optical detection method, together with an automated microfluidic delivery system that is able to detect nitrite with a limit of detection (LOD) of 15 nM. The sensor was operated in situ at Southampton Dockhead for 57 h (December 2010) and 375 measurements were taken.  相似文献   

9.
An electrochemical genosensor based on 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified octadecanethiol (ODT) self-assembled monolayer (SAM) has been fabricated for Escherichia coli detection. The results of electrochemical response measurements investigated using methylene blue (MB) as a redox indicator reveal that this nucleic acid sensor has 60 s of response time, high sensitivity (0.5 × 10−18 M) and linearity as 0.5 × 10−18-1 × 10−6 M. The sensor has been found to be stable for about four months and can be used about ten times. It is shown that water borne pathogens like Klebsiella pneumonia, Salmonella typhimurium and other gram-negative bacterial samples has no significant effects in the response of this sensor.  相似文献   

10.
In typical Case 2 waters, accurate remote sensing retrieval of chlorophyll a (chla) is still a challenging task. In this study, focusing on the Galician rias (ΝW Spain), algorithms based on neural network (NN) techniques were developed for the retrieval of chla concentration in optically complex waters, using Medium Resolution Imaging Spectrometer (MERIS) data. There is considerable interest in the accurate estimation of chla for the Galician rias, because of the economic and social importance of the extensive culture of mussels, and the high frequency of harmful algal events. Fifteen MERIS full resolution (FR) cloud-free images paired with in situ chla data (for 2002-2004 and 2006-2008) were used for the development and validation of the NN. The scope of NN was established from the clusters obtained using fuzzy c-mean (FCM) clustering techniques applied to the satellite-derived data. Three different NNs were developed: one including the whole data set, and two others using only points belonging to one of the clusters. The input data for these latter two NNs was chosen depending on the quality level, defined on the basis of quality flags given to each data set. The fitting results were fairly good and proved the capability of the tool to predict chla concentrations in the study area. The best prediction was given for the NN trained with high-quality data using the most abundant cluster data set. The performance parameters in the validation set of this NN were R2 = 0.86, mean percentage error (MPE) = − 0.14, root mean square error (RMSE) = 0.75 mg m− 3, and relative RMSE = 66%. The NN developed in this study detected accurately the peaks of chla, in both training and validation sets. The performance of the Case-2-Regional (C2R) algorithm, routinely used for MERIS data, was also tested and compared with our best performing NN and the sea-truthing data. Results showed that this NN outperformed the C2R, giving much higher R2 and lower RMSE values.This study showed that the combination of in situ data and NN technology improved the retrieval of chla in Case 2 waters, and could be used to obtain more accurate chla maps. A local-based algorithm for the chla retrieval from an ocean colour sensor with the characteristics of MERIS would be a great support in the quantitative monitoring and study of harmful algal events in the coastal waters of the Rias Baixas. The limitations and possible improvements of the developed chla algorithms are also discussed.  相似文献   

11.
Lein Harn 《Information Sciences》2010,180(16):3059-3064
A (tn) secret sharing divides a secret into n shares in such a way that any t or more than t shares can reconstruct the secret; but fewer than t shares cannot reconstruct the secret. In this paper, we extend the idea of a (tn) secret sharing scheme and give a formal definition on the (ntn) secret sharing scheme based on Pedersen’s (tn) secret sharing scheme. We will show that the (tn) verifiable secret sharing (VSS) scheme proposed by Benaloh can only ensure that all shares are t-consistent (i.e. any subset of t shares defines the same secret); but shares may not satisfy the security requirements of a (tn) secret sharing scheme. Then, we introduce new notions of strong t-consistency and strong VSS. A strong VSS can ensure that (a) all shares are t-consistent, and (b) all shares satisfy the security requirements of a secret sharing scheme. We propose a strong (ntn) VSS based on Benaloh’s VSS. We also prove that our proposed (ntn) VSS satisfies the definition of a strong VSS.  相似文献   

12.
In this study, the regioregular poly (3-hexyl thiophene) (rr-P3HT) based piezoelectric sensors were developed and evaluated to detect alcoholic volatile organic compounds (VOCs) associated with spoiled and Salmonella typhimurium contaminated packaged beef headspace. The drop coating technique was used to deposit thin films of rr-P3HT on both the sides of quartz crystal microbalance (QCM) electrode. The QCM polymer sensors were found to provide repeatable and reproducible sensor response to alcohol VOCs with a fast recovery (<2 min) at room temperature (25 °C). The principal component analysis on the sensors sensitivities was performed to discriminate the sensed alcohol VOCs, namely: 3-methyl-1-butanol from 1-hexanol. The QCM polymer sensors demonstrated selective response to low concentration of 3-methyl-1-butanol (average estimated lowest detection limit (LDL): 4.35 ppm) and to 1-hexanol (average estimated LDL: 3.20 ppm). The 30 days storage study performed on QCM sensors showed identical sensitivity responses for sensing 3-methyl-1-butanol and 1-hexanol at low concentrations.  相似文献   

13.
A neural network is developed to operationally estimate biophysical variables over land surfaces from the observations of the ENVISAT-MERIS instrument: the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (fAPAR), the fraction of vegetation cover (fCover), and the canopy chlorophyll content (LAI×Cab). The neural network requires as input the geometry of observation and the top of canopy reflectances, corrected from the atmospheric effects, in eleven spectral bands. It is trained on a reflectance database made of radiative transfer model simulations. The principles underlying the generation of the database and the design of the network are first presented. The estimated variables are then compared to other existing products, LAI- and fAPAR-MODIS and MGVI-MERIS, and validated against ground measurements performed in the framework of the VALERI project. Results show remarkable consistency of the temporal dynamics between the several products with however some differences in the range of variation. When compared to actual VALERI ground measurements, the proposed algorithm shows the best performances for LAI (RMSE = 0.47) and fAPAR (RMSE = 0.09).  相似文献   

14.
In recent years planar yttria-stabilized zirconia (YSZ) based electrochemical gas sensors for automotive exhaust applications have become a major source of interest. The present work aims to develop a sensor for industrialisation. For this reason planar YSZ-based electrochemical sensors using two metallic electrodes (platinum and gold) were fabricated using screen-printing technology and tested in a laboratory test bench for different concentrations of pollutant gas such as CO, NO, NO2 and hydrocarbons in oxygen rich atmosphere. It was furthermore shown that the selectivity towards NOx could be highly reinforced by deposing a catalytic filter consisting of 1.7-4.5 wt.% Pt dispersed on alumina directly on the sensing elements. This filter was characterized by the use of SEM, TPD and XRD.  相似文献   

15.
In this article, a PDMS microfluidic immunosensor integrated with specific antibody immobilized alumina nanoporous membrane was developed for rapid detection of foodborne pathogens Escherichia coli O157:H7 and Staphylococcus aureus with electrochemical impedance spectrum. Firstly, antibodies to the targeted bacteria were covalently immobilized on the nanoporous alumina membranes via self assembled (3-glycidoxypropyl)trimethoxysilane (GPMS) silane. Then, the impedance spectrum was recorded for bacteria detection ranging from 1 Hz to 100 kHz. The maximum impedance amplitude change for these two food pathogens was around 100 Hz. This microfluidic immunosensor based on nanoporous membrane impedance spectrum could achieve rapid bacteria detection within 2 h with a high sensitivity of 102 CFU/ml. Cross-bacteria experiments for E. coli O157:H7 and S. aureus were also explored to testify the specificity. The results showed that impedance amplitude at 100 Hz had a significant reduction in binding of bacteria when the membrane was exposed to non-specific bacteria.  相似文献   

16.
A simple and novel potentiometric biosensor for urea detection was prepared by employing an electrosynthesized polymer with buffering capability. It was obtained by deposition of a weighed amount of urease (Ur) at a glassy carbon (GC) electrode followed by immobilization by an electrosynthesized poly-o-phenylenediamine (PPD) film. An unconventional “upside-down” (UD) geometry was employed for the electrochemical cell. The response of GC/Ur/PPD sensor is linear with urea concentration in the range 10 μM to 1 mM (15 mV/mM, R2 = 0.9999) due to buffering capability of PPD film, which represents a novel role of electrosynthesized polymers in their application to biosensors. At higher concentrations, the more common Nernstian response (28 mV/decade, R2 = 0.9987) is observed. The sensor exhibits a sufficient sensitivity for practical determinations, rapid response and long term stability.  相似文献   

17.
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria.  相似文献   

18.
Our major goal in developing intelligent quality sensors is to detect bacterial pathogens such as Salmonella in the packaged beef. Olfactory sensing of specific volatile organic compounds released by the bacterial pathogens is one of the unique ways for determining contamination in food products. This work aims at developing a biomimetic piezoelectric olfactory sensor for detecting specific gases (alcohols) at low concentrations.The computational simulation was used to determine the biomimetic peptide-based sensing material to be deposited on the quartz crystal microbalance (QCM) sensor. Tripos/Sybyl®8.0 was used to predict the binding site of an olfactory receptor and determine the binding affinity as well as orientation of the selected ligands (specific molecules) to the olfactory receptor. The designed polypeptide sequence based on the simulation program was synthesized and used as a sensing layer in the QCM crystal. The developed QCM sensors were sensitive to 1-hexanol as well as 1-pentanol as predicted by the simulation algorithm. The estimated lower detection limits of the QCM sensors for detecting 1-hexanol and 1-pentanol were 2-3 ppm and 3-5 ppm, respectively. This study demonstrates the applicability of simulation-based peptide sequence that mimics the olfactory receptor for sensing specific gases.  相似文献   

19.
We define an interconnection network AQn,k which we call the augmented k-ary n-cube by extending a k-ary n-cube in a manner analogous to the existing extension of an n-dimensional hypercube to an n-dimensional augmented cube. We prove that the augmented k-ary n-cube AQn,k has a number of attractive properties (in the context of parallel computing). For example, we show that the augmented k-ary n-cube AQn,k: is a Cayley graph, and so is vertex-symmetric, but not edge-symmetric unless n = 2; has connectivity 4n − 2 and wide-diameter at most max{(n − 1)k − (n − 2), k + 7}; has diameter , when n = 2; and has diameter at most , for n ? 3 and k even, and at most , for n ? 3 and k odd.  相似文献   

20.
As a generalization of the precise and pessimistic diagnosis strategies of system-level diagnosis of multicomputers, the t/k diagnosis strategy can significantly improve the self-diagnosing capability of a system at the expense of no more than k fault-free processors (nodes) being mistakenly diagnosed as faulty. In the case k ? 2, to our knowledge, there is no known t/k diagnosis algorithm for general diagnosable system or for any specific system. Hypercube is a popular topology for interconnecting processors of multicomputers. It is known that an n-dimensional cube is (4n − 9)/3-diagnosable. This paper addresses the (4n − 9)/3 diagnosis of n-dimensional cube. By exploring the relationship between a largest connected component of the 0-test subgraph of a faulty hypercube and the distribution of the faulty nodes over the network, the fault diagnosis of an n-dimensional cube can be reduced to those of two constituent (n − 1)-dimensional cubes. On this basis, a diagnosis algorithm is presented. Given that there are no more than 4n − 9 faulty nodes, this algorithm can isolate all faulty nodes to within a set in which at most three nodes are fault-free. The proposed algorithm can operate in O(N log2 N) time, where N = 2n is the total number of nodes of the hypercube. The work of this paper provides insight into developing efficient t/k diagnosis algorithms for larger k value and for other types of interconnection networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号