首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the first time a highly sensitive and selective fluorimetric optode membrane was prepared for the determination of trace amounts of Er(III) ions. The Er(III) sensing system was constructed by incorporating 5-(dimethylamino) naphthalene-1-sulfonyl-4-phenylsemicarbazide (L) as a neutral Er(III)-selective fluoroionophore, in the plasticized PVC-membrane containing sodium tetraphenyl borate as a lipophilic anionic additive. The response of the optode is based on the strong fluorescence quenching of L by Er3+ ions. At a pH value of 5.0, the proposed optode displays a wide concentration range of 1.0 × 10−10 to 1.0 × 10−2 M, with a relatively fast response time of less than 50 s. In addition, to high stability and reproducibility, the sensor shows a unique selectivity towards Er3+ ion with respect to common cations. The proposed optode was applied successfully to the trace determination of erbium ion in binary mixture and water samples.  相似文献   

2.
This paper presents the development and construction of a sensitive new optical sensor that is highly selective to Hg2+ ion in aqueous solution. The sensing element, the newly synthesized (1Z,2Z)-N′1,N′2-dihydroxy-N1,N2-dipyridin-2-ylethanediimidamide, incorporated into a plasticized poly(vinyl chloride) membrane, is capable of determining mercury(II) with a high selectivity over a wide dynamic range from 5.78 × 10−9 to 1.05 × 10−3 M at pH 4.0 with a lower detection limit of 1.71 × 10−9 M. The optode membrane's response to Hg2+ is fully reversible and reveals a very good selectivity towards Hg2+ ion over a wide variety of other metal ions in solution. Performance characteristics of the sensor evaluated as good reversibility, wide dynamic range, long life span, long-term response stability, and high reproducibility. The proposed optical sensor gives good results for applications in direct determination of mercury(II) in environmental real samples that are satisfactorily comparable with corresponding data from cold-vapor atomic absorption spectrometry.  相似文献   

3.
A novel methodology for the determination of Hg(II) ions was developed based on optical fiber chemical sensing in a microfluidic device containing a selective tripodal chromoionophore (i.e. tris[2-(4-phenyldiazenyl)phenylamino)ethoxy]cyclotriveratrylene/TPPECTV)-PVC film. Absorbance detection was performed by incorporating a single optical fiber on the top and the bottom of the detection zone of the microfluidic device. In this micro-sensing system, the intensity of the absorption maximum at 495 nm of the TPPECTV-Hg(II) complex linearly increases as a function of the Hg(II) ion concentration in the range 1.0 × 10−6 to 2.5 × 10−4 M, with a detection limit of 0.5 μM. Interference from other heavy metal ions was not observed at significant levels. The absorbance results of the detection of Hg(II) ions in environmental water samples (river water) are in good agreement with those obtained by a macro-scale system (cold vapor atomic absorption spectrometry/CVAAS).  相似文献   

4.
A new optical sensor for mercury(II) ions is developed based on immobilization of 4-(2-pyridylazo)-resorcinol (PAR) on a triacetylcellulose membrane. Chemical binding of Hg2+ ions in solution with a PAR immobilized on the triacetylcellulose surface could be monitored spectrophotometrically at 525 nm. The optode shows excellent response over a wide concentration range of 5–3360 μM Hg(II) with a limit of detection of 1.5 μM Hg(II). The influence of factors responsible for the improved sensitivity of the sensor were studied and identified. The response time of the optode was 20 min for a stable solution, and was 15 min for a stirrer solution. The influence of potential interfering ions on the determination of 5 × 10−5 M Hg(II) was studied. The sensor was applied for determination of Hg(II) in water samples.  相似文献   

5.
A new all-solid-state Cd2+-selective electrode with a low detection limit was prepared by using conjugated thiophene oligomer α-sexithiophene (α-6T) as solid contact deposited between an ionophore-doped poly(vinyl chloride) membrane and a gold disc substrate. The electrode exhibited a Nernstian response for Cd2+ ions over a wide concentration range of 10−3-10−7 M with a detection limit as low as 1.3 × 10−8 M. Results showed that the fabricated potentiometric sensor was suitable for use within the pH range of 2.0-9.0 and exhibited good reproducibility for long-term measurements.  相似文献   

6.
A novel Ni2+ optode was prepared by covalent immobilization of thionine, 3,7-diamine-5-phenothiazoniom thionineacetate, in a transparent agarose membrane. Influences of various experimental parameters on Ni2+ sensing, including the reaction time, the solution pH and the concentration of reagents were investigated. Under the optimized conditions, a linear response was obtained for Ni2+ concentrations ranging from 1.00 × 10−10 to 1.00 × 10−7 mol l−1 with an R2 value of 0.9985. The detection limit (3σ) of the method for Ni2+ was 9.30 × 10−11 mol l−1. The influence of several potentially interfering ions such as Ag+, Hg2+, Cd2+, Zn2+, Pb2+, Cu2+, Mn2+, Co3+, Cr3+, Al3+ and Fe3+ on the determination of Ni2+ was studied and no significant interference was observed. The membrane showed a good durability and short response time with no evidence of reagent leaching. The membrane was successfully applied for the determination of Ni2+ in environmental water samples.  相似文献   

7.
The characterization of an optical sensor membrane is described for determination of rhodium. The optode sensing reagent is methyl violet which is immobilized on triacetylcellulose membrane. It has been found that oxidation of methyl violet with periodate is very slow. Presence of trace amount of Rh(III) catalyzes the reaction and causes a significant increase in the reaction rate. The reaction of periodate with the immobilized methyl violet in the presence of rhodium in acidic media causes a decrease in the absorbance of the film at 594 nm which is directly proportional to the concentration of rhodium. This sensing phase has a linear range of 1-110 μg mL−1 for Rh(III) ions. The one-shot sensor can readily be fully regenerated with methyl violet solution, and the color is fully reversible.  相似文献   

8.
This work reports on the Cu2+ chemosensing behaviour of self-organized micro-array structures of a novel donor-acceptor bichromophoric compound anchored onto Ag nanoisland films. The system exhibits quenching of the fluorescence in the presence of Cu2+ ions, with detection range extending from 2 × 10−8 M up to 3 × 10−6 M and limit of detection (LOD) of 8 × 10−9 M. The quenching of fluorescence is accompanied by a quenching of SERS signal from the metal-organic structure, which is consistent with an electron transfer between the copper cation and the organic moiety. The self-organization property of the sensing complexes into micrometric arrays offers great potential for miniaturization and future development of Cu2+ detection systems based on real-time observation of fluorescence or SERS quenching by fluorescence microscopy or microRaman spectroscopy.  相似文献   

9.
A very sensitive and reversible optical chemical sensor based on dithizone as chromoionophore immobilized within a plasticized carboxylated PVC film for Zn2+ determination is described. At optimum conditions (i.e. pH 5.0), the proposed sensor displays a linear response to Zn2+ over 5.0 × 10−8-5.0 × 10−6 mol L−1 range. This range was improved to 2.5 × 10−8-5.8 × 10−5 mol L−1 range by applying principle component-feed forward artificial neural network with back-propagation training algorithm (PC-ANNB). Detection limit of 8.0 × 10−9 mol L−1 was obtained. The sensor is fully reversible within the dynamic range and the response time (t95%) is approximately 4 min under batch conditions. In addition to its high stability and reproducibility, the sensor shows good selectivity towards Zn2+ ion with respect to common metal cations. The sensor was successfully applied for determination of Zn2+ ion in hair sample.  相似文献   

10.
A highly sensitive hydrazine sensor was developed based on the electrodeposition of gold nanoparticles onto the choline film modified glassy carbon electrode (GNPs/Ch/GCE). The electrochemical experiments showed that the GNPs/Ch film exhibited a distinctly higher activity for the electro-oxidation of hydrazine than GNPs with 3.4-fold enhancement of peak current. The kinetic parameters such as the electron transfer coefficient (α) and the rate of electron exchange (k) for the oxidation of hydrazine were determined. The diffusion coefficient (D) of hydrazine in solution was also calculated by chronoamperometry. The sensor exhibited two wide linear ranges of 5.0 × 10−7-5.0 × 10−4 and 5.0 × 10−4-9.3 × 10−3 M with the detection limit of 1.0 × 10−7 M (s/n = 3). The proposed electrode presented excellent operational and storage stability for the determination of hydrazine. Moreover, the sensor showed outstanding sensitivity, selectivity and reproducibility properties. All the results indicated a good potential application of this sensor in the detection of hydrazine.  相似文献   

11.
An electrochemical genosensor based on 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified octadecanethiol (ODT) self-assembled monolayer (SAM) has been fabricated for Escherichia coli detection. The results of electrochemical response measurements investigated using methylene blue (MB) as a redox indicator reveal that this nucleic acid sensor has 60 s of response time, high sensitivity (0.5 × 10−18 M) and linearity as 0.5 × 10−18-1 × 10−6 M. The sensor has been found to be stable for about four months and can be used about ten times. It is shown that water borne pathogens like Klebsiella pneumonia, Salmonella typhimurium and other gram-negative bacterial samples has no significant effects in the response of this sensor.  相似文献   

12.
In this work, we demonstrated a sensitive and selective electrochemical sensing protocol for the detection of TNT prepared from alkanethiols self-assembled on AuNPs modified glassy carbon (GC) electrode with preadsorbed templates of TNT. It demonstrated that the 2D molecular imprinting monolayers (MIMs) can provide a better site accessibility and lower mass-transfer resistance, while the AuNPs can enhance electrode conductivity, facilitate the electron transfer and increase the amount of TNT-imprinted sites. The prepared sensor showed not only high selectivity toward TNT in comparison to other similar nitroaromatic compounds (NACs), but also a wide linear range over TNT concentration from 4.0 × 10−8 to 3.2 × 10−6 M with a detection limit of 1.3 × 10−8 M (S/N = 3). Moreover, the imprinted sensor has been applied to the determination of TNT in spiked environmental water samples and shows promise for fast and sensitive measurement of trace levels of TNT in real samples.  相似文献   

13.
In this work, an electrochemical sensor based on ordered mesoporous carbon (OMC) for the amperometric detection of isoniazid was developed. OMC was dispersed in a solution of Nafion, and the suspension was modified onto the surface of glassy carbon (GC) electrode. Cyclic voltammetry and amperometry were used to investigate the electrochemical behaviors of isoniazid on Nafion-OMC modified electrode (Nafion-OMC/GC). The results indicate that OMC can facilitate the electrochemical oxidation of isoniazid with a great decrease of overpotential in pH 7.0 phosphate buffer solution. The proposed biosensor provides excellent performance towards the determination of isoniazid with a high sensitivity of 0.031 μA/μM, a low detection limit of 8.4 × 10−8 M and wide linear range from 1.0 × 10−7 M to 3.7 × 10−4 M at +0.20 V vs. Ag/AgCl. The method was successfully applied to the determination of isoniazid tablets with satisfying results. All the results suggest that Nafion-OMC/GC electrode is a potential candidate for a stable and efficient electrochemical sensor to detect isoniazid.  相似文献   

14.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize cysteine (Cys) in aqueous solution. The fluorescence enhancement of 1 was attributed to the cyclization reaction of 1 with Cys by 1:1 binding stoichiometry, which has been utilized as the basis of fabrication of the Cys-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Cys indicated that the methods can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Cys-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Cys with a linear range covering from 3.9 × 10−8 to 1.4 × 10−5 M and a detection limit of 7.8 × 10−9 M. And the chemosensor shows excellent selectivity for Cys over other amino acids. Moreover, the response of the chemosensor toward Cys is fast (response time less than 3 min). In addition, the chemosensor has been used for determination of Cys in serum samples with satisfactory results.  相似文献   

15.
In present paper, the graphene doped carbon paste electrode (CPE) was firstly prepared with the addition of graphene into the carbon paste mixture. Compared with conventional CPE, an improved electrochemical response of graphene doped CPE toward the redox couple of Fe(CN)63−/4− was demonstrated owing to the excellent electrical conductivity of graphene. The graphene doped CPE was further used for the successful determination of ascorbic acid (AA), and it showed an excellent electrocatalytic oxidation activity toward AA with a lower overvoltage, pronounced current response, and good sensitivity. Under the optimized experimental conditions, the proposed electrochemical AA sensor exhibited a rapid response to AA within 5 s and a linear calibration plot ranged from 1.0 × 10−7 to 1.06 × 10−4 M was obtained with a detection limit of 7.0 × 10−8 M.  相似文献   

16.
An electrochemical sensor based on graphene-polyaniline (GR-PANI) nanocomposite for voltammetric determination of 4-aminophenol (4-AP) is presented. The electrochemical behavior of 4-AP at the GR-PANI composite film modified glassy carbon electrode (GCE) was investigated by cyclic voltammetry. 4-AP exhibits enhanced voltammetric response at GR-PANI modified GCE. This electrochemical sensor shows a favorable analytical performance for 4-AP detection with a detection limit of 6.5 × 10−8 M and high sensitivity of 604.2 μA mM−1. Moreover, 4-AP and paracetamol can be detected simultaneously without interference of each other in a large dynamic range.  相似文献   

17.
A novel nanocomposite, comprising of graphene sheet (GS) and ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), was developed on the glassy carbon electrode (GCE) for the simultaneous determination of hydroquinone and catechol in 0.10 M acetate buffer solution (pH 5.0). At the GS/BMIMPF6/GCE, both hydroquinone and catechol can cause a pair of quasi-reversible and well-defined redox peaks. In comparison with bare GCE and GS modified electrode, GS/BMIMPF6/GCE showed larger peak currents, which was related to the higher specific surface area of graphene and high ionic conductivity of BMIMPF6. Under the optimized condition, the cathodic peak current were linear over ranges from 5.0 × 10−7 M to 5.0 × 10−5 M for hydroquinone and from 5.0 × 10−7 M to 5.0 × 10−5 M for catechol, with the detection limits of 1.0 × 10−8 M and 2.0 × 10−8 M, respectively. The proposed method was successfully applied to the simultaneous determination of hydroquinone and catechol in artificial sample, and the results are satisfactory.  相似文献   

18.
4-Nonylphenol (4-NP) was reported to affect the health of wildlife and humans through altering endocrine function. A novel electrochemical sensor for sensitive and fast determination of 4-NP was developed. Titanium oxide (TiO2) nanoparticles and gold nanoparticles (AuNPs) were introduced for the enhancement of electron conduction and sensitivity. 4-NP-imprinted functionalized AuNPs composites with specific binding sites for 4-NP was modified on electrode. The resulting electrodes were characterized by cyclic voltammetry (CV). Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The linear range was over the range from 4.80 × 10−4 to 9.50 × 10−7 mol L−1, with the detection limit of 3.20 × 10−7 mol L−1 (S/N = 3). The sensor was successfully employed to detect 4-NP in real samples.  相似文献   

19.
In this work, a mobile phone platform for portable chemical analysis is presented. This platform is based on the use of the built-in camera for capturing the image of a single-use colorimetric chemical sensor, while a custom-developed software application processes this image for obtaining its characteristic H (hue) value, which is related to analyte concentration. This software application is optimized for mobile phone usage, thus preserving battery life and targeting reduced computation time through a customized image processing scheme including a modified monodimensional edge detection algorithm. Meanwhile, the influence of physical and chemical factors has been characterized, with results showing that the presented platform provides accurate results even when variations on distance from phone to sensor, image focusing, or image centering are induced. In the same way, factors such as indicator concentration and membrane thickness have been shown to have negligible effects on the obtained H values. The calibration and testing procedures have shown that the presented platform is able to provide a detection limit of 3.1 × 10−5 M in a range of 3.1 × 10−5-0.1 M with a relative standard deviation for inter-membrane reproducibility lower than 1.6% for potassium concentration determination in solution.  相似文献   

20.
A new acridine fluoroionophore containing two diethanolamine ligands, 4,5-bis(N,N-di (2-hydroxyethyl)iminomethyl)acridine (BHIA), was designed and synthesized based on the fluorophore-spacer-receptor format. And its fluorescent sensing behavior towards metal ions was investigated in buffered aqueous media. The presence of Cd2+ induces the formation of a 1:1 ligand/metal complex at neutral pH, which exhibits enhanced emission at 454 nm. The fluorescence intensity is linear with the Cd2+ concentration in the range of 1.0 × 10−6 to 3.0 × 10−5 M (R = 0.9967). Experimental results show a low interference response towards other metal ions. The selective switch-on fluorescence response of BHIA to Cd2+ makes it suitable for sensing of Cd2+ in aqueous solution. The detection limit is 1.3 × 10−7 M. Moreover, the results indicated that BHIA was a reversible chemosensor for Cd2+, which makes it attractive for sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号