首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gravimetric water content (GWC, %), a commonly used measure of leaf water content, describes the ratio of water to dry matter for each individual leaf. To date, the relationship between spectral reflectance and GWC in leaves is poorly understood due to the confounding effects of unpredictably varying water and dry matter ratios on spectral response. Few studies have attempted to estimate GWC from leaf reflectance spectra, particularly for a variety of species. This paper investigates the spectroscopic estimation of leaf GWC using continuous wavelet analysis applied to the reflectance spectra (350-2500 nm) of 265 leaf samples from 47 species observed in tropical forests of Panama. A continuous wavelet transform was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength and scale. Linear relationships were built between wavelet power and GWC expressed as a function of dry mass (LWCD) and fresh mass (LWCF) in order to identify wavelet features (coefficients) that are most sensitive to changes in GWC. The derived wavelet features were then compared to three established spectral indices used to estimate GWC across a wide range of species.Eight wavelet features observed between 1300 and 2500 nm provided strong correlations with LWCD, though correlations between spectral indices and leaf GWC were poor. In particular, two features captured amplitude variations in the broad shape of the reflectance spectra and three features captured variations in the shape and depth of dry matter (e.g., protein, lignin, cellulose) absorptions centered near 1730 and 2100 nm. The eight wavelet features used to predict LWCD and LWCF were not significantly different; however, predictive models used to determine LWCD and LWCF differed. The most accurate estimates of LWCD and LWCF obtained from a single wavelet feature showed root mean square errors (RMSEs) of 28.34% (R2 = 0.62) and 4.86% (R2 = 0.69), respectively. Models using a combination of features resulted in a noticeable improvement predicting LWCD and LWCF with RMSEs of 26.04% (R2 = 0.71) and 4.34% (R2 = 0.75), respectively. These results provide new insights into the role of dry matter absorption features in the shortwave infrared (SWIR) spectral region for the accurate spectral estimation of LWCD and LWCF. This emerging spectral analytical approach can be applied to other complex datasets including a broad range of species, and may be adapted to estimate basic leaf biochemical elements such as nitrogen, chlorophyll, cellulose, and lignin.  相似文献   

2.
New poly (vinyl alcohol) (PVA) derivative containing pendant chemoselective functionality is prepared for the cyanide detection in pure water. Particularly, incorporation of the chemodosimeter 4 on PVA is performed by direct coupling of the hydroxyl group of the dye 4 and PVA hydroxyl groups via ethereal linkage using di-bromoalkane as a cross-linking agent. The chemosensory capacity of the polymeric material for the colorimetric sensing of cyanide in water is based on the reactivity of this anion toward the chemodosimeter, and its water solubility is given by PVA moiety. The chemodosimeter is developed on the basis of the trifluoroacetyl group as electrophile receptor of the cyanide anions. The final water soluble functionalized polymer presents a sensible selectivity toward cyanide anions in pure water.  相似文献   

3.
This article presents a content analysis approach for contextualizing the reporting of water and water-related issues. The intent of our approach is to enable an understanding of how important environmental topics such as water-related issues are presented to the public, and thus potentially influencing public perceptions on the issues. Multiple statistical and analytical methods are integrated in order to analyze online newspapers articles to evaluate the context, regionalism and relevance of the reporting of water issues. Using 10 online newspapers from Nebraska, USA, the content analysis approach revealed that water is most often reported in the state in the context of agriculture, while other topics such as water quality and habitat are less frequently discussed. Second, there is a lack of spatial dependency in the reporting of water across Nebraska as newspapers in close proximity to one another do not demonstrate similar reporting. Finally, the reporting of water in some newspapers is noticeably linked to local daily water quantity observations. These results suggest that, although the topic of water as an environmental issue may be vitally important across a region, the context of how water issues are reported is driven by local issues and, in some cases, relevant physical processes. Results show that there is a relative lack of coverage on major water and environmental issues except when issues are of immediate public concern. We discuss how these results could be used by resource managers to interpret media content and the public’s understanding of important environmental topics.  相似文献   

4.
采用电容传感器的型砂含水率检测仪   总被引:1,自引:1,他引:0  
介绍一种采用电容传感器的型砂含水率检测仪,它采用微电容测量技术对信号进行检测,并通过单片机对数据进行处理和控制,测量准确度高于1%,既可作为便携式仪表使用,也可用在生产线上实现混砂加水的自动控制,具有使用方便、测量速度快、性能稳定、控制可靠等优点。  相似文献   

5.
基于TDR-3的土壤水分传感器标定模型研究   总被引:8,自引:0,他引:8  
无线传感器网络为土壤水分实时采集提供了经济、方便的途径,对分析土壤含水量时空变异和作物生长气候变化意义重大.将无线传感器网络与TDR-3土壤水分传感器结合实现土壤水分实时监测.为了克服TDR-3土壤水分传感器的非线性缺陷,提出利用最小二乘法对土壤水分曲线进行分段线性标定的方法,并采用相关性系数进行精度验证.实验结果表明,分段线性法所建立模型的精确度较高,而且标定模型简单实用、可行.通过标定模型的研究,使得土壤水分的无线传感器网络能够较精确地进行土壤水分的实时监测.  相似文献   

6.
智能PID算法在液位控制系统中的应用   总被引:1,自引:8,他引:1  
针对自己开发的液位控制系统参数难以调整的问题,本文提出了一种智能PID的液位控制方法。智能PID控制算法是在常规PID控制算法的基础上,根据前人和专家的经验以及操作人员的实际经验,针对具有大滞后、时变、非线性系统对象而提出的控制算法。该算法是分段进行调节的,它既有较好的快速性,又有迟滞(死区)控制的稳定性和抗干扰能力。实验结果表明:这种控制方法不仅简单、精度高,而且具有一定的实用价值。  相似文献   

7.
An adaptive finite volume method is proposed for the numerical solution of pollutant transport by water flows. The shallow water equations with eddy viscosity, bottom friction forces and wind shear stresses are used for modelling the water flow whereas, a transport-diffusion equation is used for modelling the advection and dispersion of pollutant concentration. The adaptive finite volume method uses simple centred-type discretization for the source terms, can handle complex topography using unstructured grids and satisfies the conservation property. The adaptation criteria are based on monitoring the pollutant concentration in the computational domain during its dispersion process. The emphasis in this paper is on the application of the proposed method for numerical simulation of pollution dispersion in the Strait of Gibraltar. Results are presented using different tidal conditions and wind-induced flow fields in the Strait.  相似文献   

8.
Precision agriculture is drawing widespread attention and increasing interest in the use of on-the-go sensors to extract soil and plant information. This new trend is evident from an increased number of (tillage) studies concerning the development of sensors for measuring physical soil properties. In this study, a new dielectric-based horizontal sensor was designed and stationary calibrated in pots for measurement of volumetric soil water content. Subsequently, the sensor was combined with a load cell and installed on a tine with thickness of 25 mm, and its dynamic performance was assessed. The load cell behind the tine measures horizontal soil mechanical resistance. In order to evaluate the on-the-go performance of this combined sensor, two experiments were carried out in a soil bin, with the purpose of (i) measuring soil water content along a transect of longitudinally variable water contents, (ii) investigating the difference in horizontal resistance force measured by either the combined (horizontal force and water content) or a single sensor (horizontal force only). The stationary calibration results showed that quadratic equations with coefficients of determination (R2) of 0.989 and 0.918 could be fitted to the data points obtained from measurements in soil bulk densities of 1.5 and 1.2 g cm−3, respectively. The results of the soil bin experiments indicated that the response of the dielectric sensor to soil water content variations was reasonable, but that the output voltage of the sensor should be amplified for a better sensitivity and resolution. The presented combined sensor can provide useful information on soil physical properties towards site specific applications in soils.  相似文献   

9.
Because of the high water content of vegetation, water absorption features dominate spectral reflectance of vegetation in the near-infrared region of the spectrum. In comparison to indices based on chlorophyll absorption features (such as the normalized difference vegetation index (NDVI)), indices based on the water absorption bands are expected to “see” more deeply into thick canopies and have a preferential sensitivity to thin as opposed to thick tissues. These predictions are based on the much lower absorption coefficients for water in the short wavelength water bands as compared to chlorophyll. Thus, the water bands may have advantages over NDVI for remote sensing of photosynthetic tissues. Previous studies have primarily related water band indices (WI) to leaf area index (LAI). Here we expand the definition of photosynthetic tissues to include thin green stems and fruits and measure a wide range of species to determine the influence of variable tissue morphologies and canopy structures on these relationships. As expected, indices based on reflectance in the water absorption bands in the near infrared were best correlated with the water content of thin tissues (less than 0.5-cm thickness). The choice of wavelength for a water index was much more important for thick than for thin canopies, and the best wavelengths were those where water absorptance was weak to moderate. We identified three wavelength regions (950-970, 1150-1260 and 1520-1540 nm) that produced the best overall correlations with water content. Comparison of these wavelength regions with the atmospheric “windows” where water vapor absorption is minimal suggests that the 1150-1260 and 1520-1540 nm regions would be the best wavelengths for satellite remote sensing of water content. We also developed and tested a new Canopy Structure Index (CSI) that combines the low absorptance water bands with the simple ratio vegetation index (SR) to produce an index with a wider range of sensitivity to photosynthetic tissue area at all canopy thicknesses. CSI was better than either WI or SR alone for prediction of total area of photosynthetic tissues. However, SR was best for prediction of leaf area when other green tissues were excluded. All of these relationships showed good generality across a wide range of species and functional types.  相似文献   

10.
The operation of complex environmental systems usually accounts for multiple, conflicting objectives, whose presence imposes to explicitly consider the preference structure of the parties involved. Multi-objective Markov Decision Processes are a useful mathematical framework for the resolution of such sequential, decision-making problems. However, the computational requirements of the available optimization techniques limit their application to problems involving few objectives. In real-world applications it is therefore common practice to select few, representative objectives with respect to which the problem is solved. This paper proposes a dimensionality reduction approach, based on the Non-negative Principal Component Analysis (NPCA), to aggregate the original objectives into a reduced number of principal components, with respect to which the optimization problem is solved. The approach is evaluated on the daily operation of a multi-purpose water reservoir (Tono Dam, Japan) with 10 operating objectives, and compared against a 5-objectives formulation of the same problem. Results show that the NPCA-based approach provides a better representation of the Pareto front, especially in terms of consistency and solution diversity.  相似文献   

11.
Environment-related authorisations are a relevant issue for environmental management. They require a considerable effort by the authorities, and this might result in substantial delays for the citizens. Implementing those authorisation processes by means of e-government services would improve efficiency and, consequently, citizen satisfaction. Environment-related authorisations usually require a variety of geospatial information, and have to deal with administrative areas which do not match physical and ecological ones. They also have to integrate heterogeneous information in different formats, data models and languages, and provided by distinct organisations, even from different countries. This paper discusses how Spatial Data Infrastructures (SDIs) can deal with these problems in the environmental domain, while improving the level of service provision in terms of e-government applications. This is even more relevant within the European Union where there is a legal mandate to establish an SDI to support environmental policies and activities with an impact on the environment. As a proof-of-concept, an application to request and manage water abstraction authorisations, based on an SDI, is demonstrated. This application is part of SDIGER, a cross-border inter-administration SDI to support the water framework directive information access for the Adour–Garonne and Ebro River basins, that was a pilot project for the EU INSPIRE Directive. The introduction of this transactional e-government service modifies the administrative process of granting authorisations: it allows to re-use the effort in data capture made by the applicants in their requests, facilitates the submission of more feasible applications and reduces the workload of the office staff.  相似文献   

12.
以浙江省为例,分析了我国南方存在的水资源问题及其形成的原因,并从水制度和管理、水质污染的控制和治理以及水利工程技术改进三方面,提出了解决我国南方水资源问题的对策。  相似文献   

13.
Abstract— Highly conductive and transparent CdO thin films have been grown on glass and on single‐crystal MgO(100) by MOCVD at 400°C and were used as transparent anodes for fabricating small‐molecule organic‐light emitting diodes (OLEDs). Device response and applications potential have been investigated and compared with those of control devices based on commercial ITO anodes. It is demonstrated that highly conductive CdO thin films of proper morphology can efficiently inject holes into such devices, rendering them promising anode materials for OLEDs. Importantly, this work also suggests the feasibility of employing other CdO‐based TCOs as anodes for high‐performance OLEDs.  相似文献   

14.
15.
回转干燥窑由于出料含水量难以在线测量,其过程控制一直是一大难题.本文在分析回转干燥窑干燥过程的基础上,提出了基于分布式RBF网络的出料含水量软测量模型及其优化学习算法,首先根据先验知识和聚类将输入空间划分成多个子空间,对于每个子空间的RBF网络,由FCM算法和分区校验熵确定隐含节点数,中心向量的学习采用混沌优化与FCM相结合的混合算法.设计了获取样本数据的实验,得到了出料含水量软测量模型,此模型已成功应用于干燥窑的推断控制中.  相似文献   

16.
Abstract This study discusses the evolution of an instructional systems design (ISD) model that is based on an expanded view of Shulman's concept of pedagogical content knowledge (PCK). An initial model was evaluated in the first iteration of a design experiment, and then it was changed and assessed in two other iterations that followed. The proposed ISD model can be used in educational technology courses, elementary teacher education method courses, and teacher professional development courses to develop information and communication technology (ICT)-related PCK. ICT-related PCK comprises a body of knowledge that educators need to be able to teach with ICT. Evidence from the present study, with preservice elementary teachers, indicates that the evolved model was effective in developing some aspects of ICT-related PCK. Based on the results of the study, more systematic efforts are needed to engage preservice teachers in technology-rich design activities, so that they can adequately develop all aspects of ICT-related PCK. Finally, this study provides baseline data that can be used for comparison purposes in future studies that may be conducted to further validate or modify the suggested ISD model.  相似文献   

17.
Water distribution networks are large complex systems affected by leaks, which often entail high costs and may severely jeopardise the overall water distribution performance. Successful leak location is paramount in order to minimize the impact of these leaks when occurring. Sensor placement is a key issue in the leak location process, since the overall performance and success of this process highly depends on the choice of the sensors gathering data from the network. Common problems when isolating leaks in large scale highly gridded real water distribution networks include leak mislabelling and the obtention of large number of possible leak locations. This is due to similarity of leak effect in the measurements, which may be caused by topological issues and led to incomplete coverage of the whole network. The sensor placement strategy may minimize these undesired effects by setting the sensor placement optimisation problem with the appropriate assumptions (e.g. geographically cluster alike leak behaviors) and by taking into account real aspects of the practical application, such as the acceptable leak location distance. In this paper, a sensor placement methodology considering these aspects and a general sensor distribution assessment method for leak diagnosis in water distribution systems is presented and exemplified with a small illustrative case study. Finally, the proposed method is applied to two real District Metered Areas (DMAs) located within the Barcelona water distribution network.  相似文献   

18.
This paper proposes the Participatory Framework for Assessment and Improvement of Tools (ParFAIT) as a way to address low uptake of Water Resources Systems Optimization (WRSO) tools. ParFAIT is a transdisciplinary process conducted in five stages, two of which are participatory modeling (PM) exercises. Herein we describe the framework, introduce our candidate tool- Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization, and present the results of our first PM workshop. MOEA-assisted optimization has been put forth as a planning and decision making aid for utilities facing a large number of decisions and highly uncertain futures. The PM workshop, designed to solicit input on a tool testbed, was held in February 2015 with representatives from six Front Range, Colorado, water utilities. Our results include an expanded characterization of the decision making landscape, feedback on water utility decisions and performance goals commonly employed in WRSO studies, and new questions that warrant future investigation by researchers.  相似文献   

19.
An important bio-indicator of actual plant health status, the foliar content of chlorophyll a and b (Cab), can be estimated using imaging spectroscopy. For forest canopies, however, the relationship between the spectral response and leaf chemistry is confounded by factors such as background (e.g. understory), canopy structure, and the presence of non-photosynthetic vegetation (NPV, e.g. woody elements)—particularly the appreciable amounts of standing and fallen dead wood found in older forests. We present a sensitivity analysis for the estimation of chlorophyll content in woody coniferous canopies using radiative transfer modeling, and use the modeled top-of-canopy reflectance data to analyze the contribution of woody elements, leaf area index (LAI), and crown cover (CC) to the retrieval of foliar Cab content. The radiative transfer model used comprises two linked submodels: one at leaf level (PROSPECT) and one at canopy level (FLIGHT). This generated bidirectional reflectance data according to the band settings of the Compact High Resolution Imaging Spectrometer (CHRIS) from which chlorophyll indices were calculated. Most of the chlorophyll indices outperformed single wavelengths in predicting Cab content at canopy level, with best results obtained by the Maccioni index ([R780 − R710] / [R780 − R680]). We demonstrate the performance of this index with respect to structural information on three distinct coniferous forest types (young, early mature and old-growth stands). The modeling results suggest that the spectral variation due to variation in canopy chlorophyll content is best captured for stands with medium dense canopies. However, the strength of the up-scaled Cab signal weakens with increasing crown NPV scattering elements, especially when crown cover exceeds 30%. LAI exerts the least perturbations. We conclude that the spectral influence of woody elements is an important variable that should be considered in radiative transfer approaches when retrieving foliar pigment estimates in heterogeneous stands, particularly if the stands are partly defoliated or long-lived.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号