首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A 440 MHz wireless and passive surface acoustic wave (SAW)-based multi-gas sensor integrated with a temperature sensor was developed on a 41° YX LiNbO3 piezoelectric substrate for the simultaneous detection of CO2, NO2, and temperature. The developed sensor was composed of a SAW reflective delay lines structured by an interdigital transducer (IDT), ten reflectors, a CO2 sensitive film (Teflon AF 2400), and a NO2 sensitive film (indium tin oxide). Teflon AF 2400 was used for the CO2 sensitive film because it provides a high CO2 solubility, with good permeability and selectivity. For the NO2 sensitive film, indium tin oxide (ITO) was used. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. Using the parameters determined by the simulation results, the device was fabricated and then wirelessly measured using a network analyzer. The measured reflective coefficient S11 in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. The time positions of the reflection peaks were well matched with the predicted values from the simulation. High sensitivity and selectivity were observed at each target gas testing. The obtained sensitivity was 2.12°/ppm for CO2 and 51.5°/ppm for NO2, respectively. With the integrated temperature sensor, temperature compensation was also performed during gas sensitivity evaluation process.  相似文献   

2.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed.  相似文献   

3.
This paper presents the ability of electrostatic sprayed tin oxide (SnO2) and tin oxide doped with copper oxide (1, 2, and 4 at.% Cu) films to detect different pollutant gases, i.e., H2S, SO2, and NO2. The influence of a copper oxide dopant on the SnO2 morphology is studied using scanning electron microscopy (SEM) technique, which reveals a small decrease in the porosity and particle size when the amount of dopant is increased. The sensing properties of the SnO2 films are greatly improved by doping, i.e., the Cu-doped SnO2 films have large response to low concentration (10 ppm) of H2S at low operating temperature (100 °C). Furthermore, no cross-sensitivity to 1 ppm NO2 and 20 ppm SO2 is observed. Among the studied films, the 1 at.% Cu-doped SnO2 layer is the most sensitive in the detection of all the studied gases.  相似文献   

4.
Epitaxially grown single layer and multi layer graphene on SiC devices were fabricated and compared for response towards NO2. Due to electron donation from SiC, single layer graphene is n-type with a very low carrier concentration. The choice of substrate is demonstrated to enable tailoring of the electronic properties of graphene, with a SiC substrate realising simple resistive devices tuned for extremely sensitive NO2 detection. The gas exposed uppermost layer of the multi layer device is screened from the SiC by the intermediate layers leading to a p-type nature with a higher concentration of charge carriers and therefore, a lower gas response. The single layer graphene device is thought to undergo an n-p transition upon exposure to increasing concentrations of NO2 indicated by a change in response direction. This transition is likely to be due to the transfer of electrons to NO2 making holes the majority carriers.  相似文献   

5.
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater.  相似文献   

6.
In order to further understand the different contributions to NOx sensing mechanism as well as the importance of electrode geometry, solid state potentiometric sensors with varying La2CuO4 sensing electrode thicknesses were studied. These sensors (with a Pt counter electrode) showed a dependence of NO2 sensitivity which decreased with increasing thickness in the temperature range of 550-650 °C. They also showed NO sensitivity that was independent of thickness at 400 °C and 600 °C, but varied at temperatures between. This behavior was attributed to multiple mechanistic contributions explained by Differential Electrode Equilibria.  相似文献   

7.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

8.
精确检测CO_(2)气体浓度、控制CO_(2)气体排放是治理大气温室效应过程中最重要的部分。可调谐半导体激光吸收光谱(TDLAS)因具有高灵敏度和高可靠性的特点,广泛应用于在线监测、微量气体检测等方面。分析了TDLAS测量气体浓度的基本原理,重点介绍了直接吸收法和波长调制法并比较了两种方法的优缺点,随后介绍了近几十年来国内外应用TDLAS技术在气体检测方面取得的研究进展。最后总结了基于TDLAS的二氧化碳气体检测技术,并对其未来应用进行了展望。  相似文献   

9.
TOUGH+CO2 is a new simulator for modeling of CO2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat and up to 3 mass components, which are partitioned into three possible phases. In the code, the thermodynamics and thermophysical properties of H2O-NaCl-CO2 mixtures are determined based on system status and subdivided into six different phase combinations. By solving coupled mass and heat balance equations, TOUGH+CO2 can model non-isothermal or isothermal CO2 injection, phase behavior and flow of fluids and heat under typical conditions of temperature, pressure and salinity in CO2 geologic storage projects. The code takes into account effects of salt precipitation on porosity and permeability changes, and the wettability phenomena. The new simulator inherits all capabilities of TOUGH2 in handling fractured media and using unstructured meshes for complex simulation domains. The code adds additional relative permeability and capillary pressure functions. The FORTRAN 95 OOP architecture and other new language features have been extensively used to enhance memory use and computing efficiency. In addition, a domain decomposition approach has been implemented for parallel simulation. All these features lead to increased computational efficiency, and allow applicability of the code to multi-core/processor parallel computing platforms with excellent scalability.  相似文献   

10.
Organically modified silicates based on primary amino groups are known to be CO2 sensitive, as they can undergo a reversible acid base reaction. In order to generate detectable CO2 signals and to limit the cross-sensitivity to humidity, some sources suggest that these materials should be operated at higher temperatures (50-70 °C). In this paper, a new variant of CO2 sensing is to be presented, namely a combination of work function readout and organically modified silicates, which yields CO2 detection even at room temperature. Kelvin probe measurements are used for work function readout. The layers are intended to be used in a “Floating Gate Field Effect Transistors” (FGFETs) sensing platform (mySens) by Micronas. The reversible interaction of CO2 with spin-coated heteropolysiloxane sensitive layers results in changes of the work function with typical signal heights of 15-20 mV (change from 400 to 4000 ppm CO2) and response times of only a few minutes. Also, results will be presented regarding variations in the chemical nature of the films. The findings summarized in this paper point towards the possibility of a new room temperature CO2 sensor, which comprises fast response times and sufficient sensitivity for ambient CO2 variations.  相似文献   

11.
The influences of La2O3 loading on the ethanol sensing properties of SnO2 nanorods were investigated. An obvious enhancement of response was obtained. The response of 5 wt% La2O3 loaded SnO2 nanorods was up to 213 for 100 ppm ethanol at low working temperature of 200 °C, while that of pure SnO2 nanorods is 45.1. The improvement in response might be attributed to the presence of basic sites, which facilitated the dehydrogenation process. While the working temperature was increased to 300 °C, the sensor response decreased to 16 for 100 ppm ethanol. Additionally, the La2O3 loaded SnO2 nanorods sensors showed good selectivity to ethanol over methane and hydrogen. Our results demonstrated that the La2O3 loaded SnO2 nanorods were promising in fabricating high performance ethanol sensors which could work at low temperature.  相似文献   

12.
W.  K.  A.  H.L. 《Sensors and actuators. B, Chemical》2009,141(2):485-490
Microsphere-templated BaCO3 films with well-defined area were deposited onto quartz crystal microbalances by thermal ink-jet printing, and the devices were characterized with respect to their microstructures and NO2 sensing characteristics. Highly porous three-dimensional BaCO3 frameworks with promising sensor characteristics were obtained. The printed thin films exhibited reversible frequency shifts following exposure to NO2 and subsequent recovery under CO/CO2 at 400 °C. The feasibility of controlled deposition of complex functional films in controlled patterns is discussed in the context of the direct-write features of ink-jet printing.  相似文献   

13.
The measurement of CO2 by Non-Dispersive InfraRed absorption (NDIR) is often used as a tracer of human occupancy in confined living spaces. The major constraint of commercial sensors comes from the power consumption of the IR source, which makes them unsuitable for autonomous operation.This paper reports the fabrication and the characterization of a black-body IR source based on a microhotplate micromachined in Si and suitable to work above 650 °C. The use of state-of-the-art MEMS technologies allows to lower the power consumption below 50 mW while ensuring a lifetime well beyond 10 years.The radiance of the microhotplate in the spectral range where CO2 adsorption takes place indicated that the device works as a quasi-perfect blackbody source providing enough power to drive an autonomous NDIR system for CO2 detection.  相似文献   

14.
Thermodilution is the current standard for determination of cardiac output. The method is invasive and constitutes a risk for the patient. As an alternative CO2 rebreathing allows non-invasive cardiac output estimation using Ficks principle. The method relies on estimation of arterial CO2 partial pressure from end-tidal CO2 pressure and estimation of mixed venous CO2 partial pressure from end-tidal CO2 during rebreathing. Presumably the oxygenation of blood in the lung capillaries increases lung capillary CO2 pressure due to the Haldane effect, which during rebreathing may result in overestimation of the mixed venous CO2 pressure. However, the Haldane effect is not discussed in the current literature describing cardiac output estimation using CO2 rebreathing. The purpose of this study is to construct and verify a compartmental tidal breathing lung model to investigate the physiological mechanisms that influence the CO2 rebreathing technique. The model simulations show agreement with previous studies describing end-tidal to arterial differences in CO2 pressure and rebreathing with high and low O2 fractions in the rebreathing bag. In conclusion the simulations show that caution has to be taken when using end-tidal measurements to estimate CO2 pressures, especially during rebreathing where the Haldane effect causes mixed venous CO2 partial pressure to be substantially overestimated.  相似文献   

15.
A novel flexible H2 gas sensor was fabricated by the layer-by-layer (LBL) self-assembly of a polypyrrole (PPy) thin film on a polyester (PET) substrate. A Pt-based complex was self-assembled in situ on the as-prepared PPy thin film, which was reduced to form a Pt-PPy thin film. Microstructural observations revealed that Pt nanoparticles formed on the surface of the PPy film. The sensitivity of the PPy thin film was improved by the Pt nanoparticles, providing catalytically active sites for H2 gas molecules. The interfering gas NH3 affected the limit of detection (LOD) of a targeted H2 gas in a real-world binary gas mixture. A plausible H2 gas sensing mechanism involves catalytic effects of Pt particles and the formation of charge carriers in the PPy thin film. The flexible H2 gas sensor exhibited a strong sensitivity that was greater than that of sensors that were made of Pd-MWCNTs at room temperature.  相似文献   

16.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

17.
The article presents the results of research studies on ceramics SnO2 sensors with Pt catalysts. The role of catalysis in gas sensing mechanisms was investigated. In order to obtain samples with different catalytic activity but with identical Pt loading, the Pt/SnO2 catalysts were calcined at different temperatures (400-800 °C). Structural analysis of these samples was performed. Among the sensors manufactured with Pt/SnO2, the highest sensitivity was shown for the sensor obtained with Pt/SnO2 sample sintered at 800 °C. The correlation between catalytic activity and sensor sensitivity is given.  相似文献   

18.
The CuO-functionalized SnO2 nanowire (NW) sensors were fabricated by depositing a slurry containing SnO2 NWs on a polydimethylsiloxane (PDMS)-guided substrate and subsequently dropping Cu nitrate aqueous solution. The CuO coating increased the gas responses to 20 ppm H2S up to 74-fold. The Ra/Rg value of the CuO-doped SnO2 NWs to 20 ppm H2S was as high as 809 at 300 °C, while the cross-gas responses to 5 ppm NO2, 100 ppm CO, 200 ppm C2H5OH, and 100 ppm C3H8 were negligibly low (1.5–4.0). Moreover, the 90% response times to H2S were as short as 1–2 s at 300–400 °C. The selective detection of H2S and enhancement of the gas response were attributed to the uniform distribution of the sensitizer (CuO) on the surface of the less agglomerated network of the SnO2 NWs.  相似文献   

19.
A novel Ti/Sb-SnO2/PbO2 composite electrode was fabricated for COD determination. The new electrode configuration improved the sensitivity of the amperometric method apparently. Effects of common experimental parameters, such as applied potential, pH and concentration of the electrolyte on its analytical performance were investigated. A linear range of 0.5-200 mg L−1 COD and a detection limit (a signal-to-noise ratio of 3) of 0.3 mg L−1 were achieved under optimized conditions. The experiments for detecting COD in model samples and real samples were carried out to evaluate the electrode's performance. The obtained results were in good agreement with those determined by the standard dichromate method, with a relative error less than 12%.  相似文献   

20.
The Er-Mo:Yb2Ti2O7 nanocrystalline phosphor has been prepared by sol-gel method and used as an optical thermometry. By Mo codoping, the green upconversion (UC) emission intensity increased about 250 times than that of Er:Yb2Ti2O7 under a 976 nm laser diode excitation. It indicates that such green enhancement arises from the high excited state energy transfer (HESET) with the |2F7/2, 3T2> state of Yb3+-MoO42− dimer to the 4F7/2 level of Er3+. The fluorescence intensity ratio (FIR) of the two green UC emissions bands was studied as a function of temperature in a range of 290-610 K, and the maximum sensitivity and the temperature resolution were approximately 0.0074 K−1 and 0.1 K, respectively. It suggests that the Er-Mo:Yb2Ti2O7 nanophosphor with a higher green UC emissions efficiency is a promising prototype for applications in optical temperature sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号