共查询到15条相似文献,搜索用时 54 毫秒
1.
累托石层孔材料在废水处理中的应用研究(Ⅵ)——糖蜜废水的处理 总被引:9,自引:0,他引:9
用十六烷基三甲基溴化铵(CTMAB)或四氯化钛与累托石进行交联改性制备累托石层孔材料,并用其吸附经预处理后的糖蜜废水.结果表明当废水中CTMAB累托石层孔材料用量为50 g/L,pH= 3.0,常温吸附60 min时,COD去除率可达73.6%以上.吸附遵循Freundlish等温吸附式Γ=8.607Ce0.331,表观吸附速率常数K295=0.051 4 min-1;吸附热力学参数ΔH= -7.732 kJ/mol,ΔG=-5.772 kJ/mol,ΔS= -6.112 J/(mol·K). 钛-累托石层孔材料对糖蜜废水吸附最佳pH值为10,用量为30 g/L,吸附1 h,其对废水中COD的吸附量可达27.6 mg/g; 钛-累托石层孔材料对糖蜜废水的吸附热力学参数为 ΔH = - 40.7 kJ/mol,ΔS= - 46.2 J/(mol·K),ΔG= - 26.93 kJ/mol. 相似文献
2.
累托石层材料在废水处理中的应用研究(Ⅱ)——电镀废水的处理 总被引:1,自引:0,他引:1
利用累托石层孔材料处理电镀废水,累托石层孔材料用量5g/L,pH=4,添加剂FS01用量为0.2g/L,搅拌吸附60-90min,处理后水中残留CL^-质量浓度为0.014mg/L,残留Cr^6 质量浓度0.16mg/L;在不改变原水pH条件下,累托石层孔材料用量为2.5g/L,F02用量为0.5g/L,搅拌时间为20-40min,处理后水中残留铬质量浓度为0.2mg/L,累托石加入Pt01试剂后,吸附能力增强,可用于处理各种含Cr^6 电镀废水,当累托层孔材料用量为2g/L,pH=7,Pt01试剂2g/L,搅拌吸附30min时,其吸附率可达98.89%,处理水Cr^6 质量浓度降低到0.3mg/L,动态试验表明,处理后的废液不仅含Cr^6 浓度低,而且颜色几乎无色透明。 相似文献
3.
用十六烷基三甲基溴化铵(CTMAB)或四氯化钛与累托石进行交联改性制备累托石层孔材料,并用其吸附经预处理后的糖蜜废水.结果表明:当废水中CTMAB累托石层孔材料用量为50g/L,pH=3.0,常温吸附60min时,COD去除率可达73.6%以上.吸附遵循Freundlish等温吸附式Γ=8.607Ce0.331,表观吸附速率常数K295=0.0514min-1;吸附热力学参数:ΔH=-7.732kJ/mol,ΔG=-5.772kJ/mol,ΔS=-6.112J/(mol.K).钛累托石层孔材料对糖蜜废水吸附最佳pH值为10,用量为30g/L,吸附1h,其对废水中COD的吸附量可达27.6mg/g;钛累托石层孔材料对糖蜜废水的吸附热力学参数为:ΔH=-40.7kJ/mol,ΔS=-46.2J/(mol.K),ΔG=-26.93kJ/mol. 相似文献
4.
利用累托石层孔材料处理含Cr(Ⅵ)废水,试验研究表明,累托石层孔材料对Cr(Ⅵ)有较好的吸附效果,土(Ⅱ)的吸附效果优于Na2CO3钠化交联土;铁交联土吸附效果优于铝交联土,它是一种处理污水中有害金属离子有效的矿物环境材料. 相似文献
5.
用十六烷基三甲基溴化铵(CTMAB)或四氯化钛与累托石进行交联改性制备累托石层孔材料,并用其吸附经预处理后的糖蜜废水.结果表明:当废水中CTMAB累托石层孔材料用量为50 g/L,pH= 3.0,常温吸附60 min时,COD去除率可达73.6%以上.吸附遵循Freundlish等温吸附式Γ=8.607Ce0.331,表观吸附速率常数K295=0.051 4 min-1;吸附热力学参数:ΔH= -7.732 kJ/mol,ΔG=-5.772 kJ/mol,ΔS= -6.112 J/(mol·K). 钛-累托石层孔材料对糖蜜废水吸附最佳pH值为10,用量为30 g/L,吸附1 h,其对废水中COD的吸附量可达27.6 mg/g; 钛-累托石层孔材料对糖蜜废水的吸附热力学参数为: ΔH = - 40.7 kJ/mol,ΔS= - 46.2 J/(mol·K),ΔG= - 26.93 kJ/mol. 相似文献
6.
用十六烷基三甲基溴化铵(CTMAB)与累托石进行交联反应制备了CTMAB累托石层孔材料并研究其吸附性能.结果表明:当废水中CTMAB累托石层孔材料用量为40 g/L,pH=3.0,常温,吸附时间为60 min时,其COD去除率达76%以上.吸附符合Freundlich等温吸附式:Γ=1.338C1/nt,吸附反应为一级反应:Ct=C0×e-1.1×10-3t.吸附热力学研究表明:ΔH=1.819 kJ/mol,ΔG=-0.051 kJ/mol,ΔS=6.073 J/(mol*K). 相似文献
7.
8.
用十六烷基三甲基溴化铵(CTMAB)与累托石进行交联反应制备了CTMAB累托石层孔材料并研究其吸附性能.结果表明:当废水中CTMAB累托石层孔材料用量为40g/L,pH=3.0,常温,吸附时间为60min时,其COD去除率达76%以上.吸附符合Freundlich等温吸附式:Γ=1.338C1/nt,吸附反应为一级反应:Ct=C0×e-1.1×10-3t.吸附热力学研究表明:ΔH=1.819kJ/mol,ΔG=-0.051kJ/mol,ΔS=6.073J/(mol·K). 相似文献
9.
累托石层孔材料在废水处理中的应用研究(I)——含Cr(Ⅵ)废水的处理 总被引:14,自引:4,他引:14
利用累托石层孔材料处理含Cr(Ⅵ)废水,试验研究表明,累托石层孔材料对Cr(Ⅵ)有较好的吸附效果,土(Ⅱ)的吸附效果优于Na2CO3钠化交联土;铁交联土吸附效果优于铝交联土,它是一种处理污水中有害金属离子有效的矿物环境材料。 相似文献
10.
介绍了锆交联累托石的制备以及将锆交联累托石用于制药厂废水处理的研究成果.结果表明:当1 L废水加入交联累托石20g、pH=3.0、65 ℃振荡吸附30 min时,COD去除率可达76%以上;其最大表观吸附容量可达119 mg COD/g;其等温吸附平衡可用Freundlich方程来描述. 相似文献
11.
针对电镀废水污染日益严重的现状,对合肥某工业园区电镀废水进行在原生物处理的基础上采用集成膜技术进行了中试研究,并将出水循环至电镀工艺.试验结果表明,这一系统运行稳定,能用于电镀工业并优于现工业园废水处理系统. 相似文献
12.
碱性废液对水处理构筑物的腐蚀破坏研究 总被引:1,自引:0,他引:1
纯碱工艺中碱性废液对混凝土结构水处理构筑物产生较严重的腐蚀和破坏.在其腐蚀破坏过程中,溶解性化学腐蚀、膨胀性结晶化学破坏和强碱腐蚀作用等几种腐蚀同时存在,并相互影响,起作用的影响因子有镁离子、氯离子、硫酸根离子和废液的强碱性等. 相似文献
13.
纯碱工艺中碱性废液对混凝土结构水处理构筑物产生较严重的腐蚀和破坏.在其腐蚀破坏过程中,溶解性化学腐蚀、膨胀性结晶化学破坏和强碱腐蚀作用等几种腐蚀同时存在,并相互影响,起作用的影响因子有镁离子、氯离子、硫酸根离子和废液的强碱性等. 相似文献
14.
研究了不同条件下制备的Ti/Zr层柱累托石,利用差热分析、红外光谱分析、X射线粉晶衍射、扫描电镜、BET比表面积分析等方法对层柱累托石的性能进行了表征.红外吸收光谱分析结果表明层柱反应只在层间域内进行,Ti/Zr层柱累托石不仅含有丰富的羟基,而且具有较强的热稳定性. X射线粉晶衍射分析结果表明:Ti基层柱累托石的层间高度可达1.8~1.9 nm;多金属聚合阳离子比单一金属聚合阳离子柱撑可获得更大的层间;钛层柱累托石经高温(400 ℃)焙烧开始出现锐钛矿新相.差热分析说明柱撑后的累托石的热稳定性大为增强.Ti/Zr层柱累托石的BET比表面积为202.434 m2/g,表面酸性<+3.5,松散堆积密度为0.930 8 g/mL. 相似文献
15.
累托石层孔材料在废水处理中的应用研究(V)——硝基酚钠废水处理 总被引:5,自引:0,他引:5
用累托石与铁交联剂在适宜条件下进行交联反应而制得累托石层孔材料.由XRD显示,其d001由2.3nm提高到3.6~4.0nm.用累托石层孔材料对含硝基酚钠工业废水进行吸附处理试验.结果表明:每克累托石层孔材料对硝基酚钠的静态吸附容量为12.89mg,吸附热力学参数分别为:ΔH=6.68kJ·mol-1,ΔG=-3.91kJ·mol-1,ΔS=35.9J/(mol·K),等温吸附遵循Freundlich曲线,表观吸附速率常数K295=4.72×10-4s-1. 相似文献