首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Swedish regulation, SSI FS 98:5, requires that radiological workers of category A use dosemeters from an approved personal dosimetry service. The 11 services operating in Sweden at the moment use five different types of dosemeter. All have been tested for their ability to determine Hp(10) and some of them to determine Hp(0.07) according to the European Commission report Radiation Protection 73, EUR 14852, of 1994. The five unique systems have been tested regarding the angular and energy dependence of the response of the dosemeters. The test points for the determination of Hp(10) are all, except one, within the trumpet curve and for the unique systems it is shown that the uncertainty related to angular response at three different energies is within the required +/- 40% except for the lowest X ray quality 40 kV. The energy dependence dominates over the directional dependence and the choice of radiation quality for calibration is of great importance for the system performance.  相似文献   

2.
Based on recommendations of the International Commission on Radiological Protection, recommendations and requirements on the performance of dosimetric systems and individual monitoring services have been formulated in national and international standards and other documents of relevance. Although these all have essentially the same aim, the formulated criteria and the guidance given vary. Using the individual monitoring service of NRG in Arnhem and its thermoluminescence dosemeter as an example, the current paper reviews a number of ways to estimate the uncertainty in dose assessments and compares the criteria given in recommendations and standards. An attempt is made to contribute to some convergence of recommendations and requirements on aspects of dosimetric performance.  相似文献   

3.
This paper summarises the evaluation of the 1997 EURADOS questionnaire on dosimetric systems able to assess personal dose equivalent. In total, 56 approved dosimetric services in the European Union and Switzerland responded, together monitoring approximately 615,000 occupationally exposed persons. Of these services, 48 stated they were able to assess the external doses in terms of personal dose equivalent. The general aspects of the dosimetric systems and the quality assurance programmes of these services are discussed.  相似文献   

4.
Beta emitters are widely used in nuclear medicine for diagnostic and therapeutic purposes. The critical groups exposed to a radioactive patient include the staff, other patients and members of the public accompanying the patient. The aim of this work is to characterise thermoluminescent (TL) materials for the staff monitoring of nuclear medicine services that manipulate beta radiation solutions of (153)Sm. This study was performed using CaSO(4):Dy + Teflon pellets, produced at IPEN, with different dimensions. For the dosimetric characterisation, these TL dosemeters were exposed to gamma source ((60)Co) and to beta sealed sources ((90)Sr + (90)Y, (204)Tl and (147)Pm) and to a non-sealed source ((153)Sm). Results were obtained related to reproducibility, lower detection limits, calibration curves, angle and energy dependence of response. All tested materials show usefulness for monitoring of workers exposed to beta radiation.  相似文献   

5.
Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between l-alanine and dl-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the dl-alanine temperature coefficient is more than 50% higher than the l-alanine temperature coefficient.  相似文献   

6.
UVPROM memory devices employing FGMOS transistors as memory cells make excellent dosemeters for applications involving ionising radiation. With proper preparation and programming, these devices can be used in remote-sensing applications in high-radiation environments with no power required during exposure.  相似文献   

7.
8.
For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.  相似文献   

9.
Photoluminescence glass dosemeters (PLDs) and thermoluminescence dosemeters (TLDs) are commonly used as a personal monitoring dosemeter. PLDs and TLDs were used for surface dose monitoring of medical staff involved in (125)I brachytherapy for prostate cancer because these dosemeters have a wide dose-response linearity and high sensitivity for low photon energy. Surface doses measured with PLDs agreed with those with TLDs within ~20 % except for a few cases. Surface doses at a surgeon's left hand and arm were higher than those at the other measuring points. A surgeon received a maximum dose of 650 μGy at the back of left hand. Surface doses to an assistant were <100 μGy. Surface doses to a nurse, a radiologist, an anaesthesiologist and a radiological technologist were <10 μGy. The occupational exposure to a surgeon could be reduced by the adjustment of fluoroscopic parameters and the use of lead gloves.  相似文献   

10.
In the development of techniques for the retrospective assessment of the dose absorbed by communities living and working adjacent to the site of a nuclear accident, attention has concentrated on the use of natural minerals such as quartz and feldspar as dosemeters. These minerals are widely found in household earthenware and almost all types of bricks and concrete. Their main disadvantages are variable and often low sensitivity, and the possibility of a comparatively large natural dose prior to the accident, depending on the age of the building and the type or building material. However, there are other potential unheated crystalline materials found in the domestic and industrial environment which may also act as retrospective dosemeters, and may be considerably more sensitive. We have surveyed the thermoluminescent and optically stimulated luminescent (OSL) characteristics of several such chemicals and this paper reports on the OSL sensitivity, the size of the residual dose immediately after manufacture, stability and derived minimum detection limits.  相似文献   

11.
The properties of the thermally stimulated exoelectron emission (TSEE) and thermoluminescent (TL) emission of topaz-glass composites were studied with the aim of using them as solid-state dosemeters. The TSEE response was studied as a function of radiation energy and as a function of absorbed dose. Topaz-glass composites presented a linear TL and TSEE response to dose within a range of 0.01-1 Gy. The topaz-glass composites presented higher TSEE peaks than topaz-Teflon pellets. In the dosimetry of radiotherapic fields normally the responses of the topaz-glass dosemeters are comparable to topaz-Teflon pellets. The results confirmed that these new dosemeters can be useful in monitoring the quality of the radiation sources. This dose mapping technique is particularly useful in investigating dose distribution throughout a planned target volume.  相似文献   

12.
Irradiation effects were investigated in zircon crystals by methods of optical absorption and luminescence. Special attention was given to the effects of vacuum ultraviolet (VUV) radiation. The same main thermoluminescence (TL) peaks with the same thermal activation energies appeared after VUV as after X- or beta irradiation, indicating that the same traps were induced by the different irradiations. TL excitation spectra in the VUV showed an increase <220 nm and maxima near 190 and 140 nm. Excitation spectra of phototransferred TL (PTTL) and optically stimulated luminescence (OSL) were also measured. Most TL emission bands also appeared in the X-luminescence, PTTL and OSL. Dosimetric properties such as the TL radiation sensitivity, thermal stability of radiation-induced defects and TL dose dependence were also investigated. The radiation sensitivity of zircon was by an order of magnitude lower than that of TLD-100. The 355 K TL peak showed linear dose dependence only up to approximately 500 Gy and the 520 K peak up to approximately 1800 Gy.  相似文献   

13.
14.
The use of active personal dosemeters (APD) in interventional radiology was evaluated by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its sixth Framework Programme. Interventional radiology procedures can be very complex and they can lead to relatively high doses to personnel who stand close to the primary radiation field and are mostly exposed to radiation scattered by the patient. For the adequate dosimetry of the scattered photons, APDs must be able to respond to low-energy [10-100 keV] and pulsed radiation with relatively high instantaneous dose rates. An intercomparison of five APD models deemed suitable for application in interventional radiology was organised in March 2007. The intercomparison used pulsed and continuous radiation beams, at CEA-LIST (Saclay, France) and IRSN (Fontenay-aux-Roses, France), respectively. A specific configuration, close to the clinical practice, was considered. The reference dose, in terms of H(p)(10), was derived from air kerma measurements and from the measured and calculated energy distributions of the scattered radiation field. Additional Monte Carlo calculations were performed to investigate the energy spectra for different experimental conditions of the intercomparison. The results of this intercomparison are presented in this work and indicate which APDs are able to provide a correct response when used in the specific low-energy spectra and dose rates of pulsed X-rays encountered in interventional radiology.  相似文献   

15.
Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.  相似文献   

16.
17.
The International Electrotechnical Commission (IEC) develops new standards for radiation protection dosemeters which follow a new concept. They are much more flexible in detail, but still ensure the same measurement quality. They are, for example, no longer specific for the detector type, but rather specific for the measurement task, e.g. for individual monitoring with active direct-reading instruments. Another example is that they are flexible with respect to the ranges of influence quantities. The conceptual changes are described in this paper, together with the advantages this new concept provides for manufacturers, users and legislators.  相似文献   

18.
The work of Task Group 5.1 (uncertainty studies and revision of IDEAS guidelines) and Task Group 5.5 (update of IDEAS databases) of the CONRAD project is described. Scattering factor (SF) values (i.e. measurement uncertainties) have been calculated for different radionuclides and types of monitoring data using real data contained in the IDEAS Internal Contamination Database. Based upon this work and other published values, default SF values are suggested. Uncertainty studies have been carried out using both a Bayesian approach as well as a frequentist (classical) approach. The IDEAS guidelines have been revised in areas relating to the evaluation of an effective AMAD, guidance is given on evaluating wound cases with the NCRP wound model and suggestions made on the number and type of measurements required for dose assessment.  相似文献   

19.
Alanine and Radio-Photo-Luminescence (RPL) dosemeters are passive dosemeters used to monitor absorbed dose in all kind of radiation fields. However, up to now both dosemeter types are calibrated to photon sources only. In order to study the response of RPL and alanine dosemeters to mixed high-energy particle fields like those occurring at CERN's accelerators, an irradiation campaign at the CERN-EC High-Energy Reference field Facility (CERF-field) was performed. In this facility a copper target is irradiated by hadrons with a momentum of 120 GeV/c. Dosemeters were exposed to various mixed radiation fields by placing them at various positions on the surface of the target. In addition to the experiment FLUKA Monte Carlo simulations were carried out, which provide information concerning the energy deposition at the dosemeter locations. This paper compares the measurements with the simulation results and discusses the radiation field compositions present at the various dosemeter positions on the target.  相似文献   

20.
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号