首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The snap-through and pull-in instabilities of the micromachined arch-shaped beams under an electrostatic loading are studied both theoretically and experimentally. The pull-in instability that results in a system collision with an electrode substrate may lead to a system failure and, thus, limits the system maximum displacement. The beam/plate structure with a flat initial configuration under an electrostatic loading can only experience the pull-in instability. With the different arch configurations, the structure may experience either only the pull-in instability or the snap-through and pull-in instabilities together. As shown in our computation and experiment, those arch-shaped beams with the snap-through instability have the larger maximum displacement compared with the arch-shaped beams with only the pull-in stability and those with the flat initial configuration. The snap-through occurs by exerting a fixed load, and the structure experiences a discontinuous displacement jump without consuming power. Furthermore, after the snap-through jump, the structures are demonstrated to have the capacity to withstand further electrostatic loading without pull-in. Those properties of consuming no power and increasing the structure deflection range without pull-in is very useful in microelectromechanical systems design, which can offer better sensitivity and tuning range.  相似文献   

2.
In this paper, the two-point boundary value problem (BVP) of the nano-cantilever deflection subjected to Casimir and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the nano-beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green’s function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. The pull-in parameters of the beam are computed under the combined effects of electrostatic and Casimir forces. Electrostatic microactuators and freestanding nanoactuators are considered as special cases of our study. The detachment length and the minimum initial gap of freestanding nanocantilevers, which are the basic design parameters for NEMS switches, are determined. The results of the analytical study are verified by numerical solution of the BVP. The centerline of the beam under the effect of electrostatic and Casimir forces at small deflections and at the point of instability is obtained numerically to test the validity of the shape function assumed for the beam deflection in the analytical investigation. Finally, the large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of nano-canilevers.  相似文献   

3.
An important design issue of electrostatic torsion actuator is the relative locations of the actuating electrodes, where the bias voltage is applied. These geometrical design parameters affect both the pull-in angle as well as the pull-in voltage. In this paper, a new approximated analytical solution for the pull-in equation of an electrostatic torsion actuator with rectangular plates is derived. The analytical expression is shown to be within 0.1% of the one degree of freedom (1DOF) lumped-element model numerical simulations. Moreover, the analytical expressions are compared with the full coupled-domain finite-elements/boundary-elements (FEM/BEM) simulations provided by MEMCAD4.8 Co-solve tool, showing excellent agreement. The approach presented here provides better physical insight, more rapid simulations and an improved design optimization tool for the actuator  相似文献   

4.

In the present research, stability and static analyses of microelectromechanical systems microstructure were investigated by presenting an out-of-plane structure for a lumped mass. The presented model consists of two stationary electrodes in the same plane along with a flexible electrode above and in the middle of the two electrodes. The nonlinear electrostatic force was valuated via numerical methods implemented in COMSOL software where three-dimensional simulations were performed for different gaps. The obtained numerical results were compared to those of previous research works, indicating a good agreement. Continuing with the research, curves of electrostatic and spring forces were demonstrated for different scenarios, with the intersection points (i.e., equilibrium points) further plotted. Also drawn were plots of deflection versus voltage for different cases and phase and time history curves for different values of applied voltage followed by introducing and explaining pull-in and pull-out snap-through voltages in the system for a specific design. It is worth noting that, at voltages between the pull-in and pull-out snap-through voltages, the system was in bi-stable state. Based on the obtained results, it was observed that the gap between the two electrodes and the applied voltage play significant roles in the number and type of the equilibrium points of the system.

  相似文献   

5.
Larkin  K.  Ceniceros  J.  Abdelmoula  H.  Abdelkefi  A. 《Microsystem Technologies》2020,26(12):3685-3704

The ever-increasing demand for microelectromechanical systems (MEMS) in modern electronics has reinforced the need for extremely accurate analytical and reduced-order models to aid in the design of MEMS devices. Many MEMS designs consist of cantilever beams with a tip mass attached at the free end to act as a courter electrode for electrical actuation. One critical modeling aspect of electrically actuated MEMS is the electrostatic force that drives these systems. The two most used representations in the literature approximate the electrostatic force between two electrodes as a point force. In this work, the effects of the representation of the electrostatic force for electrically actuated microelectromechanical systems are investigated. The system under investigation is composed of a beam with an electrode attached to its end. The distributed force, rigid body, and point mass electrostatic force representations are modeled, studied, and their output results are compared qualitatively. Static and frequency analyses are carried out to investigate the influences of the electrostatic force representation on the static pull-in, fundamental natural frequency, and mode shape of the system. A nonlinear distributed-parameter model is then developed in order to determine and characterize the response of electrically actuated systems when considering various representation of the electrostatic forces. The results show that the size of the electrode may strongly affect the natural frequencies and static pull-in when the point mass, rigid body, and plate representations are considered. From nonlinear analysis, it is also proven that the representation may affect the hardening behavior of the system and its dynamic pull-in. This modeling and analysis give guidelines about the usefulness of the electrostatic force representations and possible erroneous assumptions that can be made which may result in inaccurate design and optimal performance detection for electrostatically actuated systems.

  相似文献   

6.
This work presents a systematic analysis of electrostatic actuators driven by multiple uncoupled voltage sources. The use of multiple uncoupled voltage sources has the potential of enriching the electromechanical response of electrostatically actuated deformable elements. This in turn may enable novel MEMS devices with improved and even new capabilities. It is therefore important to develop methods for analyzing this class of actuators. Pull-in is an inherent instability phenomenon that emanates from the nonlinear nature of the electromechanical coupling in electrostatic actuators. The character of pull-in in actuators with multiple uncoupled voltage sources is studied, and new insights regarding pull-in are presented. An analytical method for extracting the pull-in hyper-surface by directly solving the voltage-free K-N pull-in equations derived here, is proposed. Solving simple but interesting example problems illustrate these new insights. In addition, a novel /spl alpha/-lines numerical method for extracting the pull-in hyper-surface of general electrostatic actuators is presented and illustrated. This /spl alpha/-lines method is motivated by new features of pull-in, that are exhibited only in electrostatic actuators with multiple uncoupled voltage sources. This numerical method permits the analysis of electrostatic actuators that could not have been analyzed by using current methods.  相似文献   

7.
In this work, we investigate the structural behavior of a micro-electromechanical system arch microbeam actuated by electric fringing-fields where the electrodes are located at both side of the microbeam. In this particular configuration, the electrostatic actuating force is caused by the asymmetry of the fringing electric fields acting in a direction opposite to the relative deflection of the microbeam. A reduced-order model is derived for the considered system using the so-called Galerkin decomposition and assuming linear undamped mode shapes of a straight beam as basis functions in the decomposition process. A static analysis is performed to investigate the occurrence of any structural instability. The eigenvalue problem is then investigated to calculate the fundamental as well as higher natural frequencies variation of the microbeam with the applied DC load. A bifurcation analysis is then implemented to derive a criterion for whether symmetric or asymmetric bifurcation is occurring during the static structural instability. The results show elimination of the so-called pull-in instability in this kind of systems as compared to the regular case of parallel-plates electrostatic actuation. The bifurcation analysis shows that the arch goes for asymmetric bifurcation (symmetry breaking) with increase in initial elevation without the occurrence of symmetric bifurcation (snap-through) for any initial elevation.  相似文献   

8.
9.
Electromechanical Model of Electrically Actuated Narrow Microbeams   总被引:2,自引:0,他引:2  
A consistent one-dimensional distributed electromechanical model of an electrically actuated narrow microbeam with width/height between 0.5–2.0 is derived, and the needed pull-in parameters are extracted with different methods. The model accounts for the position-dependent electrostatic loading, the fringing field effects due to both the finite width and the finite thickness of a microbeam, the mid-plane stretching, the mechanical distributed stiffness, and the residual axial load. Both clamped–clamped and clamped-free (cantilever) microbeams are considered. The method of moments is used to estimate the electrostatic load. The resulting nonlinear fourth-order differential equation under appropriate boundary conditions is solved by two methods. Initially, a one-degree-of-freedom model is proposed to find an approximate solution of the problem. Subsequently, the meshless local Petrov–Galerkin (MLPG) and the finite-element (FE) methods are used, and results from the three methods are compared. For the MLPG method, the kinematic boundary conditions are enforced by introducing a set of Lagrange multipliers, and the trial and the test functions are constructed using the generalized moving least-squares approximation. The nonlinear system of algebraic equations arising from the MLPG and the FE methods are solved by using the displacement iteration pull-in extraction (DIPIE) algorithm. Three-dimensional FE simulations of narrow cantilever and clamped–clamped microbeams are also performed with the commercial code ANSYS. Furthermore, computed results are compared with those arising from other distributed models available in the literature, and it is shown that improper fringing fields give inaccurate estimations of the pull-in voltages and of the pull-in deflections. 1641  相似文献   

10.
戎华  陈涵  王鸣 《传感技术学报》2008,21(3):431-434
材料弹性模量、残余应力的在线提取,已成为MEMS领域中日益迫切的需要。文中首先简要介绍现有的一些主要的材料参数提取方法,然后提出了一种无需静电作用下两端固支梁吸合电压的显式解析表达式,而是利用决定静电作用固支梁弯曲挠度的微分方程直接计算吸合电压,再提取材料参数的算法。避免了在推导吸合电压的显式表达式过程中可能引入的误差,有利于保证材料参数测量的精度。模拟结果表明这种算法速度快、精度高,对实际应用有较好的参考价值。  相似文献   

11.
In this paper, the influence of the van der Waals force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter model. The fringing field effect is also taken into account. The nonlinear differential equation of the model is transformed into the integral form by using the Green’s function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of micromechanical electrostatic actuators are also investigated as a special case of our study by neglecting the van der Waals force.  相似文献   

12.
The work presented here is about the nonlinear pull-in behavior of different electrostatic micro-actuators. He’s homotopy perturbation method (HPM) is applied to solve different types of micro-actuators like Fixed–Fixed beam and Cantilever beam actuators. Simulated results are presented for further analysis. Also the obtained results compare well with the literature.  相似文献   

13.
This paper presents a generalized model for the pull-in phenomenon in electrostatic actuators with a single input, either charge or voltage. The pull-in phenomenon of a general electrostatic actuator with a single input is represented by an algebraic equation referred to as the pull-in equation. This equation directly yields the pull-in parameters, namely, the pull-in voltage or pull-in charge and the pull-in displacement. The model presented here permits the analysis of a wide range of cases, including nonlinear mechanical effects as well as various nonlinear, nonideal, and parasitic electrical effects. In some of the cases, an analytic solution is derived, which provides physical insight into how the pull-in parameters depend upon the design and properties of the actuator. The pull-in equation can also yield rapid numerical solutions, allowing interactive and optimal design. The model is then utilized to analyze analytically the case of a Duffing spring, previously analyzed numerically by Hung and Senturia, and captures the variations of the pull-in parameters in the continuum between a perfectly linear spring and a cubic spring. Several other case studies are described and analyzed using the pull-in equation, including parallel-plate and tilted-plate (torsion) actuators taking into account the fringing field capacitance, feedback and parasitic capacitance, trapped charges, an external force, and large displacements  相似文献   

14.
Pull-in study of an electrostatic torsion microactuator   总被引:10,自引:0,他引:10  
Pull-in study of an electrostatic microactuator is essential for making the electrostatic actuation more effective. In this paper, pull-in analysis is presented for an electrostatic torsion microactuator. The torsion microactuator can be used as a microtorsion mirror. A polynomial algebraic equation for the pull-in voltage and pull-in angle of a torsion microactuator is derived. Two types of microactuators fabricated using bulk micromachining are presented. Measurements done on the fabricated microactuators are reported, showing deviations within 1% error from the calculations  相似文献   

15.
Extending the travel range of analog-tuned electrostatic actuators   总被引:6,自引:0,他引:6  
The pull-in instability limits the travel distance of elastically suspended parallel-plate electrostatic microactuators to about 1/3 of the undeflected gap distance. In this paper, we examine the “leveraged bending” and “strain-stiffening” methods for extending the travel range of electrostatic actuators. The leveraged bending effect can be used to achieve full gap travel at the cost of increased actuation voltage. The strain-stiffening effect can be used to minimize actuation voltage for a given travel range. An analytical approximation shows that the strain-stiffening effect can be used to achieve a stable travel distance up to about 3/5 of the gap. A tunable reflective diffraction grating known as the polychromator has been designed using these actuation techniques, and selected designs have been fabricated and tested for actuation behavior. Gratings with 1024 flat, closely packed grating-element actuators have been fabricated with over 1-cm-long mirrors, achieving stable vertical travel distances of more than 1.75 μm out of a 2-μm gap  相似文献   

16.
Nonlinear dynamic investigation of electrostatically actuated micro-electro-mechanical-system (MEMS) microcantilever structures is presented. The nonlinear analysis aims to better quantify, than the linear model, the instability threshold associated with electrostatically actuated MEMS structures, where the pull-in voltage of the microcantilever is determined using a phase portrait analysis of the microsystem. The microcantilever is modeled as a lumped mass-spring system. The nonlinear electrostatic force is incorporated into the lumped microsystem through an equivalent area of the microcantilever for a given electrostatic potential. Electro-mechanical force balance plots are obtained for various electrostatic potentials from which the static equilibrium positions of the microcantilever are obtained and the respective conservative energy values are determined. Subsequently, phase portrait plots are obtained for the corresponding energy values from which the pull-in voltage is estimated for the microsystem. This pull-in voltage value is in good agreement with the previously published results for the same geometric and material parameters. The results obtained for linear electrostatic models are also presented for comparison.  相似文献   

17.
The pointwise estimation of heat conduction solution as a function of truncation error of a finite difference scheme is addressed. The truncation error is estimated using a Taylor series with the remainder in the Lagrange form. The contribution of the local error to the total pointwise error is estimated via an adjoint temperature. It is demonstrated that the results of numerical calculation of the temperature at an observation point may thus be refined via adjoint error correction and that an asymptotic error bound may be found.  相似文献   

18.
Circular micro plates are used in the many Microelectromechanical devices as micropumps and micro pressure sensors. All such systems exhibit a static instability phenomenon (Divergence) which is known as the “pull-in” instability. In this paper a distributed model was used to investigate the pull-in instability of a circular micro plate subjected to non-uniform electrostatic pressure and uniform hydrostatic pressure. The non-linear governing equation was derived and in order to linearize the obtained governing equations, step by step linearization method was used, then the linear system of equation was solved by finite difference method. The obtained results for only electrostatic actuation were compared with the existing results and good agreement has been achieved. There are exist two method of actuation. The pull-in voltages for these two actuation mechanism were investigated and the obtained results exhibited different effects on each actuation mechanism.  相似文献   

19.
To date, the only effective approach for computing guaranteed bounds on the solution of an initial value problem (IVP) for an ordinary differential equation (ODE) has been interval methods based on Taylor series. This paper derives a new approach, an interval Hermite-Obreschkoff (IHO) method, for computing such enclosures. Compared to interval Taylor series (ITS) methods, for the same stepsize and order, our IHO scheme has a smaller truncation error, better stability, and requires fewer Taylor coefficients and high-order Jacobians.The stability properties of the ITS and IHO methods are investigated. We show as an important by-product of this analysis that the stability of an interval method is determined not only by the stability function of the underlying formula, as in a standard method for an IVP for an ODE, but also by the associated formula for the truncation error.  相似文献   

20.
The numerical errors associated with explicit upstream finite difference solutions of two-dimensional advection—Dispersion equation with linear sorption are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation. The numerical truncation errors are defined using Peclet and Courant numbers in the X and Y direction, a sink/source dimensionless number and new Peclet and Courant numbers in the XY plane. The effects of these truncation errors on the explicit solution of a two-dimensional advection–dispersion equation with a first-order reaction or degradation are demonstrated by comparison with an analytical solution in uniform flow field. The results show that these errors are not negligible and correcting the finite difference scheme for them results in a more accurate solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号