首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The properties of fibre reinforced composites are largely determined by the method of fabrication. With steel fibre concrete, the geometry of the fibre, the method of casting and compaction, and the compactibility of the fibre concrete mix all significantly influence the disposition of the fibres in the hardened composite. Tests on fibre concrete mixes with adequate flowability characteristics are reported to show that apart from these factors, the size, shape and surface texture of the aggregates all very much affect not only the fibre orientation but also the fibre distribution during the manufacturing process. The degree of compaction as measured by the solidity of the compacted concrete is influenced both by the method of compaction, and when vibrated, by the duration of vibration. Internal vibration increased compressive strength marginally compared to external vibration, but the latter increased the flexural strength substantially compared to internal vibration. The effect of vibration was more pronounced with dry mixes. Increasing the size and the roughness of the surface texture of the aggregates reduced the flexural strength by as much as 25%. Vertical casting reduced not only flexural strength but also the capability of the fibres in resisting stress in the post-cracking stages. Loading in the “as cast” direction produced a small, but noticeable, increase in flexural strength but had negligible effect in compression. Round and smooth aggregates encouraged fibre settlement in the bottom half of the ‘as cast’ section, but this was counteracted by larger aggregate sizes, crushed aggregates and higher fibre volumes. The results show that good mix design and external vibration are necessary to optimise the performance of the fibres.  相似文献   

2.
《Composites》1993,24(1):33-52
The use of short pitch-based carbon fibres (0.5% by weight of cement, 0.189 volume % (vol%) of concrete), together with a dispersant, chemical agents and silica fume, in concrete with fine and coarse aggregates resulted in a flexural strength increase of 85%, a flexural toughness increase of 205%, a compressive strength increase of 22%, and a material price increase of 39%. The slump was 102 mm (4 in) at the optimum water/cement ratio of 0.50. The air content was 6%, so the freeze-thaw durability was increased, even in the absence of an air entrainer. The aggregate size had little effect on the above properties. The minimum carbon fibre content for flexural strength increase was 0.1 vol%, although the flexural toughness was still increased below this fibre volume fraction. The optimum fibre length was such that the mean fibre length decreased from 12 mm before mixing to 7 mm after mixing, which used a Hobart mixer. The drying shrinkage was decreased by up to 90%. The electrical resistivity was decreased by up to 83%.  相似文献   

3.
This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7–27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.  相似文献   

4.
Concrete with ceramic waste aggregate   总被引:3,自引:0,他引:3  
Use of hazardous industrial wastes in concrete-making will lead to greener environment. In ceramic industry about 30% production goes as waste, which is not recycled at present. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible substitute for conventional crushed stone coarse aggregate. Experiments were carried out to determine the compressive, splitting tensile and flexural strengths and the modulus of elasticity of concrete with ceramic waste coarse aggregate and to compare them with those of conventional concrete made with crushed stone coarse aggregate. The properties of the aggregates were also compared. Test results indicate that the workability of ceramic waste coarse aggregate concrete is good and the strength characteristics are comparable to those of the conventional concrete.  相似文献   

5.
Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively)was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve.For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve.By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.  相似文献   

6.
This paper focuses on the experimental investigation carried out on high strength concrete reinforced with hybrid fibres (combination of hooked steel and a non-metallic fibre) up to a volume fraction of 0.5%. The mechanical properties, namely, compressive strength, split tensile strength, flexural strength and flexural toughness were studied for concrete prepared using different hybrid fibre combinations – steel–polypropylene, steel–polyester and steel–glass. The flexural properties were studied using four point bending tests on beam specimens as per Japanese Concrete Institute (JCI) recommendations. Fibre addition was seen to enhance the pre-peak as well as post-peak region of the load–deflection curve, causing an increase in flexural strength and toughness, respectively. Addition of steel fibres generally contributed towards the energy absorbing mechanism (bridging action) whereas, the non-metallic fibres resulted in delaying the formation of micro-cracks. Compared to other hybrid fibre reinforced concretes, the flexural toughness of steel–polypropylene hybrid fibre concretes was comparable to steel fibre concrete. Increased fibre availability in the hybrid fibre systems (due to the lower densities of non-metallic fibres), in addition to the ability of non-metallic fibres to bridge smaller micro cracks, are suggested as the reasons for the enhancement in mechanical properties.  相似文献   

7.
The use of recycled aggregate from construction and demolition waste (CDW) as replacement of fine and coarse natural aggregate has increased in recent years in order to reduce the high consumption of natural resources by the civil construction sector. In this work, an experimental investigation was carried out to investigate the influence of steel fiber reinforcement on the stress–strain behavior of concrete made with CDW aggregates. In addition, the flexural strength and splitting tensile strength of the mixtures were also determined. Natural coarse and fine aggregates were replaced by recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) at two levels, 0% and 25%, by volume. Hooked end steel fibers with 35 mm of length and aspect ratio of 65 were used as reinforcement in a volume fraction of 0.75%. The research results show that the addition of steel fiber and recycled aggregate increased the mechanical strength and modified the fracture process relative to that of the reference concrete. The stress–strain behavior of recycled aggregate concrete was affected by the recycled aggregate and presented a more brittle behavior than the reference one. With the addition of steel fiber the toughness, measured by the slope of the descending branch of the stress–strain curve, of the recycled concretes was increased and their behavior under compression becomes similar to that of the fiber-reinforced natural aggregate concrete.  相似文献   

8.
混凝土作为非均质材料,其材料性能存在随试件几何尺寸变化的尺寸效应。该文在细观层次上将混凝土看作由粗骨料、砂浆和二者界面过渡区组成的三相复合材料,采用刚体弹簧元数值方法模拟了混凝土的劈裂抗拉强度和弯曲抗压强度的尺寸效应,并与已有的试验结果进行了对比验证。结果表明:劈裂加载的试件破坏形态和劈裂抗拉强度与试验结果均具有良好的一致性,并且小尺寸试件所表现出的尺寸效应要明显于大尺寸试件;对不同尺寸四点弯曲钢筋混凝土梁开展细观数值分析得到跨中截面混凝土的弯曲抗压强度,随着梁有效高度的增加,名义弯曲抗压强度整体上呈现降低的趋势,但当梁有效高度大于240mm时趋于稳定。  相似文献   

9.
This paper investigated the flexural behaviour of 12 reinforced concrete (RC) beams made of phyllite coarse aggregates produced as by-product of underground gold mining activity. The beams were tested to failure under four point test. Collapse of the beams which were adequately designed against shear failure occurred mostly through either flexural-shear failure and/or diagonal tension failure. The experimental failure loads averaged approximately 115% of the theoretical failure loads. It was observed that the beams developed early shear cracks and higher flexural crack widths than allowable at service loads. Deflections compared reasonably well with the design code requirement but displacement ductility was low. It is recommended that British Standard (BS) 8110 design concrete shear stress values be multiplied by 0.8 to assure that the predicted shear capacity of phyllite concrete would be low and reasonable as compared to flexural capacity. In that case, BS 8110 can be used to provide adequate load factor against flexural failure for under-reinforced RC beams made of phyllite coarse aggregates.  相似文献   

10.
This paper presents a study of an ongoing research project on the use of new composites for enhancement of the performance of concrete beams. A plain concrete beam was externally bonded with wire mesh–epoxy composite using one to five wire mesh layers. The flexural performance of the beam specimens bonded with wire mesh layers was compared with the beam specimens bonded with carbon fibre as well as a hybrid of wire mesh–epoxy–carbon fibre composite. The test results show that the use of wire mesh with epoxy is an efficient way to improve the flexural performance of concrete beam specimens. The increase in wire mesh layers significantly enhances the flexural strength, cracking behaviour and energy absorption capability. In comparison with carbon fibre, wire mesh–epoxy composite is more efficient in flexural strength and ductility. In addition, it was found that a concrete beam bonded with a hybrid wire mesh–epoxy–carbon fibre composite has significantly more energy absorption capability compared to specimens bonded with only carbon fibre.  相似文献   

11.
The paper presents results on the long-term mechanical properties and durability under marine exposure of a steel fibre reinforced concrete (SFRC) mix containing pulverized fuel ash (PFA) which was developed for marine applications. The mix was of proportions by weight of PFA:OPC:fine aggregate:coarse aggregate of 0.26:0.74:1.51:0.84 with a water/(OPC+PFA) ratio of 0.4. The resulting cement content of the mix was 435 kg m−3. Theconcrete was reinforced with low-carbon steel, corrosion-resistant (galvanized) or melt-extract (stainless) steel fibres. Prism specimens were cured in the tidal zone at Aberdeen beach, under wet-dry cycles of sea-water spray in the laboratory, in a water-tank in the laboratory and in the laboratory air. The specimens were cured for up to 1200 marine cycles of exposure (640 days) and were tested at regular intervals of age. The paper presents results on long-term compressive strength, flexural strength and energy absorption capacity as measured from the load-deflection curves. The state of corrosion of fibres is also described. The results indicate that fibres embedded within concrete remain free from corrosion under marine exposure. In the case of fibres exposed at the concrete surface during casting, extensive corrosion occurs in low-carbon steel fibres, isolated rust spots appear in corrosion-resistant fibres and no corrosion is evident in melt-extract fibres. This corrosion, however, remains a surface phenomenon and does not penetrate the concrete. The long-term mechanical properties indicate no deterioration due to possible corrosion. In general the compressive strength of concrete increases significantly with fibre reinforcement.Increases in flexural strength and post-cracking ductility due to fibre reinforcement are of the order normally expected of SFRC.  相似文献   

12.
This paper aims to investigate the possibility of utilizing steel slags produced in Croatian plants as a concrete aggregate. Aggregate properties were determined on coarse slag fractions (4–8, 8–16 mm) according to the relevant European Standards. Considering the obtained results, slags were specified in accordance with the classes as given in the main European standard for aggregates, whereupon these classes were compared to the Croatian regulation requirements. The obtained results proved that coarse slag fractions can be suitable for concrete application. Therefore, concrete mixtures were prepared with coarse slag fractions whose hardened state properties (compressive and flexural strength, static modulus of elasticity, volume changes and corrosion susceptibility) were then compared with the properties of reference concrete made of commonly used natural aggregate materials, namely dolomite. According to the obtained test results it can be concluded that the observed slags can be a good substitute for natural aggregate materials.  相似文献   

13.
《Composites Part B》2001,32(1):21-31
The interest of using fibre reinforced plastic (FRP) materials in rehabilitating damaged concrete structures respectively has been increased rapidly in recent years. In this paper, the structural behaviours of the glass–fibre composite strengthened concrete structures subjected to uni-axial compression and three point bending tests are discussed through experimental studies. Two types of concrete structure are used in present study, they are concrete cylinder and rectangular concrete beam. Discussion on the environmental effects of composite strengthened reinforced concrete (RC) structures is also addressed. Experimental results show that the use of glass–fibre composite wrap can increase the load carrying capacity of the plain concrete cylinders with and without notch formation. The flexural load capacity of the concrete beam increases to more than 50% by bonding 3 layers of glass–fibre composite laminate on the beam tension surface. Direct hand lay up method gives better strengthening characteristic in term of the ultimate flexural load compared with pre-cured plate bonding technique. The flexural strengths of composite strengthened RC beams submerged into different chemicals solution for six months are increased compared with the RC beams without strengthening. The strength of the concrete structure is seriously attacked by strong acids.  相似文献   

14.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

15.
Hybridization of steel–polypropylene leads to improvements of both the mechanical and ductility characteristics of concrete. In this investigation, the effect of steel, polypropylene (PP) and steel-PP hybrid fibres on the compressive strength, tensile strength, flexural toughness and ductility of oil palm shell fibre reinforced concrete (OPSFRC) was studied. The comparison on the above said properties between the specimens prepared with crushed and uncrushed oil palm shell (OPS) as lightweight coarse aggregate was also carried out. The experimental results showed that the highest compressive strength of about 50 MPa was produced by the mix with 0.9% steel and 0.1% PP hybrid fibres. The highest increments in the splitting tensile and the flexural strengths of the OPSFRC were found up to 83% and 34%, respectively. However, the mixes with 1% PP fibres produced negative effects on both the compressive and tensile strengths. The results on the toughness indices showed that the OPSC possess no post-cracking flexural toughness. Though, the flexural deflection and toughness of the OPSC was significantly enhanced by the addition of fibres; the dominance of the steel fibre on the first crack flexural deflection and toughness of OPSFRC was evident. The mixes with 0.9% steel and 0.1% PP hybrid fibres reported the highest improvement in toughness index and residual strength factor.  相似文献   

16.
粗细骨料比例和水泥石强度对混凝土断裂参数的影响   总被引:7,自引:0,他引:7  
张君  王林  孙明  刘骞 《工程力学》2004,21(1):136-142
骨料对于混凝土断裂性能的影响是近年来各国学者普遍关心的课题。采用基于粘性裂纹模型(FCM)的数值分析方法,通过三点弯曲试验,评价了粗细骨料比例(砂率:0.30-0.67)及水泥石强度(混凝土抗压强度:40-80MPa)对混凝土断裂参数的影响。这些参数包括抗拉强度、抗弯强度、应力-裂纹宽度关系和断裂能。研究结果表明,骨料总量一定而粗骨料含量不同时,抗压强度几乎不受影响,而随粗骨料含量增加,抗拉强度、抗弯强度和断裂能均逐渐增大。同时,水泥石强度增高,开裂强度、抗拉强度、抗弯强度和断裂能均增大。  相似文献   

17.
纤维长径比对混凝土力学性能影响显著,而长径比变化的实质是纤维直径和形态均发生变化,因此现有研究多是通过改变聚丙烯(PP)纤维(包含粗、细PP纤维)直径或截面形态设置长径比梯度,从而导致变量不唯一。本文对粗PP纤维(d=700 μm)和细PP纤维(d=80 μm)长径比对混凝土力学性能的影响进行了试验研究,分析了粗、细PP纤维增强混凝土的力学特性。结果表明:粗、细PP纤维增强混凝土坍落度随所掺纤维长径比增大而先降低后趋于稳定,抗压、抗弯、劈拉强度随所掺纤维长径比增大而呈现出先增大后减小的趋势,700 μm粗PP纤维最优长径比为42,80 μm细PP纤维最优长径比为200。此外,提出了宏观力学拟合计算理论用于分析粗PP纤维长径比对PP纤维增强混凝土抗弯强度的影响,以此来增强试验结果的预测性和可控性;对粗、细PP纤维在混凝土中的摩擦粘结机制进行了力学分析,掌握了影响摩擦粘结力的具体因素。   相似文献   

18.
The results of an exploratory investigation on the suitability of periwinkle shells as coarse aggregate for concrete are reported. The tests show that the strength of concrete made with periwinkle shells are limited by the strength of the shells but high enough for structural concrete. The modulus of elasticity and modulus of rupture are low compared with normal gravel concrete. While the strength of reinforced members in direct compression is low, flexural members have satisfactory strength but with larger deformation than normal gravel concrete.  相似文献   

19.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

20.
Abstract

The main components of building rubble collected from demolished structures are waste concrete, brick and tile. A series of experiments using recycled aggregates of various compositions from building rubble were conducted. The test results show that building rubble can be transformed into useful recycled aggregate through proper processing. When the recycled aggregate was washed, the negative effects on the recycled concrete were greatly reduced. This is especially meaningful for flexural strength. Recycled coarse aggregate is the weakest phase given a low water/cement ratio. This effect will dominate the mechanical properties of recycled concrete. On the contrary, using recycled aggregate in concrete has little effect on its mechanical properties if the water/cement ratio is high. This mechanism does not occur in recycled mortar. The quantity of recycled fine aggregate will govern the mortar strength reduction percentage. Although using brick and tile in concrete will affect its mechanical properties, the effect is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号