首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of microcrystalline silicon (μc-Si:H) in thin-film solar cells is addressed in the present paper. Results of different technologies for the preparation of μc-Si:H are presented, including plasma enhanced chemical vapour deposition (PECVD) using 13.56 MHz (radio frequency, rf) and 94.7 MHz (very high frequency, vhf) and hot-wire chemical vapour deposition (HWCVD). The influence of the silane concentration (SC) on the material and solar cell parameters is studied for the different techniques as the variation of SC allows to optimise the solar cell performance in each deposition regime. The best performance of μc-Si:H solar cells is always observed near the transition to amorphous growth. The highest efficiency obtained so far at a deposition rate of 5 Å/s is 9.4%, achieved with rf-PECVD in a deposition regime of using high pressure and high discharge power. High deposition rates and solar cell efficiencies could be also achieved by vhf-PECVD. An alternative approach represents the HWCVD which also demonstrated high deposition rates for μc-Si:H. However, good material quality and solar cell performance could only be achieved at low substrate temperatures and, consequently, low deposition rates. The μc-Si:H solar cells prepared by HWCVD exhibit comparably high efficiencies up to 9.4% and exceptionally high open circuit voltages up to 600 mV but at lower deposition rates (≈1 Å/s). The properties of PECVD and HWCVD solar cells are carefully compared.  相似文献   

2.
Encapsulated and series-connected amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) based thin film silicon solar modules were developed in the superstrate configuration using an aluminum foil as temporary substrate during processing and a commodity polymer as permanent substrate in the finished module. For the development of μc-Si:H single junction modules, aspects regarding TCO conductivity, TCO reduction, deposition uniformity, substrate temperature stability and surface morphology were addressed. It was established that on sharp TCO morphologies where single junction μc-Si:H solar cells fail, tandem structures consisting of an a-Si:H top cell and a μc-Si:H bottom cell can still show a good performance. Initial aperture area efficiencies of 8.2%, 3.9% and 9.4% were obtained for fully encapsulated amorphous silicon (a-Si:H) single junction, microcrystalline silicon (μc-Si:H) single junction and a-Si:H/μc-Si:H tandem junction modules, respectively.  相似文献   

3.
This paper reviews recent efforts to provide the scientific and technological basis for cost-effective and highly efficient thin film solar modules based on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon. Textured ZnO:Al films prepared by sputtering and wet chemical etching were applied to design optimised light-trapping schemes. Necessary prerequisite was the detailed knowledge of the relationship between film growth, structural properties and surface morphology obtained after etching. High rate deposition using plasma enhanced chemical vapour deposition at 13.56 MHz plasma excitation frequency was developed for μc-Si:H solar cells yielding efficiencies of 8.1% and 7.5% at deposition rates of 5 and 9 Å/s, respectively. These μc-Si:H solar cells were successfully up-scaled to a substrate area of 30×30 cm2 and applied in a-Si:H/μc-Si:H tandem cells showing initial test cell efficiencies up to 11.9%.  相似文献   

4.
This paper presents a-Si:H and μc-Si:H p–i–n solar cells prepared at high deposition rates using RF (13.56 MHz) excitation frequency. A high deposition pressure was found as the key parameter to achieve high efficiencies at high growth rates for both cell types. Initial efficiencies of 7.1% and 11.1% were achieved for a μc-Si:H cell and an a-Si:H/μc-Si:H tandem cell, respectively, at a deposition rate of 6 Å/s for the μc-Si i-layers. A μc-Si:H cell prepared at 9 Å/s exhibited an efficiency of 6.2%.  相似文献   

5.
TCO and light trapping in silicon thin film solar cells   总被引:6,自引:0,他引:6  
For thin film silicon solar cells and modules incorporating amorphous (a-Si:H) or microcrystalline (μc-Si:H) silicon as absorber materials, light trapping, i.e. increasing the path length of incoming light, plays a decisive role for device performance. This paper discusses ways to realize efficient light trapping schemes by using textured transparent conductive oxides (TCOs) as light scattering, highly conductive and transparent front contact in silicon p–i–n (superstrate) solar cells. Focus is on the concept of applying aluminum-doped zinc oxide (ZnO:Al) films, which are prepared by magnetron sputtering and subsequently textured by a wet-chemical etching step. The influence of electrical, optical and light scattering properties of the ZnO:Al front contact and the role of the back reflector are studied in experimentally prepared a-Si:H and μc-Si:H solar cells. Furthermore, a model is presented which allows to analyze optical losses in the individual layers of a solar cell structure. The model is applied to develop a roadmap for achieving a stable cell efficiency up to 15% in an amorphous/microcrystalline tandem cell. To realize this, necessary prerequisites are the incorporation of an efficient intermediate reflector between a-Si:H top and μc-Si:H bottom cell, the use of a front TCO with very low absorbance and ideal light scattering properties and a low-loss highly reflective back contact. Finally, the mid-frequency reactive sputtering technique is presented as a promising and potentially cost-effective way to up-scale the ZnO front contact preparation to industrial size substrate areas.  相似文献   

6.
A series of systematic investigations on microcrystalline silicon (μc-Si:H) solar cells at high deposition rates has been studied. The effect of high deposition pressure and narrow cathode-substrate (CS) distance on the deposition rate and quality of microcrystalline silicon is discussed. The microcrystalline silicon solar cell is adopted as middle cell and bottom cell in a three-stacked junction solar cell. The characteristics of large area three-stacked junction solar cells, whose area is 801.6 cm2 including grid electrode areas, are studied in various deposition rates from 1 to 3 nm/s of microcrystalline silicon. An initial efficiency of 13.1% is demonstrated in the three-stacked junction solar cell with microcrystalline silicon deposited at 3 nm/s.  相似文献   

7.
We have developed a high-rate plasma process based on high-pressure and silane-depletion glow discharge for highly efficient microcrystalline silicon (μc-Si:H) p–i–n junction solar cells. Under high-rate conditions (2–3 nm/s), we find that the deposition pressure becomes the dominant parameter in determining solar-cell performance. With increasing deposition pressure from 4 to 7–9 Torr, short-circuit current increases by 50% due to a remarkable improvement in quantum efficiencies at the visible and near infrared. As a result, the maximum efficiency of 9.13% has been achieved at an i-layer deposition rate of 2.3 nm/s. We attribute the improved performance of high-pressure-grown μc-Si:H solar cells to the structural evolution toward denser grain arrangement that prevents post-oxidation of grain boundaries.  相似文献   

8.
Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm2.  相似文献   

9.
This paper reviews recent progress in large-area a-Si/a-SiGe tandem solar cells at Sanyo. Optimized hydrogen dilution conditions for high-rate deposition of hydrogenated amorphous silicon (a-Si:H) films and thinner i-layer structures have been systematically investigated for improving both the stabilized efficiency and the process throughput. As a result, a high photosensitivity of 106 for a-Si:H films has been maintained up to the deposition rate of 15 Å/s. Furthermore, the world's highest initial conversion efficiency of 11.2% which corresponds to a stabilized efficiency of about 10% has been achieved for a 8252 cm2 a-Si/a-SiGe tandem solar cell by combining the optimized hydrogen dilution and other successful technologies.  相似文献   

10.
A series of technical data on four-terminal a-Si/ /poly-Si stacked solar cells has been reported. The developed device has some unique significances such as high achievable efficiency, and low cost with almost no light induced degradation. It has been shown on a poly-Si bottom cell that an efficiency of 17.2% has been obtained by employing high conductivity with wide optical band-gap p-type μc-SiC as a window material and n-type μc-SiC as a back ohmic contact with BSF effects. On the optically transparent a-Si top cell, an optimum design has been experimentally made with the device structure of p μc-SiC/p a-SiC/i a-Si/n μc-Si/ITO, and an efficiency of 7.25% has been obtained with a 100 nm thick i-layer, while the best efficiency is 12.3% for p-i-n single-junction solar cell with 500 nm i-layer thickness deviced by Ag back-electrode. With the 100 nm thick ultrathin top cell, a total conversion efficiency as high as 21.0% has been achieved on a-Si/ /poly-Si four-terminal tandem solar cells.  相似文献   

11.
A high efficiency thin film silicon solar cell and module   总被引:2,自引:0,他引:2  
A photoelectric conversion efficiency of over 10% has been achieved in thin-film microcrystalline silicon solar cells which consist of a 2 μm thick layer of polycrystalline silicon. It was found that an adequate current can be extracted even from a thin film due to the very effective light trapping effect of silicon with a low absorption coefficient. As a result, this technology may eventually lead to the development of low-cost solar cells. Also, an initial aperture efficiency as high as 13.5% has been achieved with a large area (91 cm × 45 cm) tandem solar cell module of microcrystalline silicon and amorphous silicon (thin film Si hybrid solar cell). An even greater initial efficiency of 14.7% has been achieved in devices with a small size (area of 1 cm2), and further increases of efficiency can be expected.  相似文献   

12.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,保持衬底温度在125℃沉积硅薄膜材料及电池,研究了硅烷浓度、辉光功率等沉积参数对材料和电池性能的影响。在125℃的低温条件下,通过优化沉积工艺,在玻璃衬底和PET塑料衬底上分别制备出效率达到6.8%和3.9%的单结非晶硅电池。在PET衬底上,将低温沉积非晶硅电池的技术应用于的叠层电池的顶电池,制备出效率为4.6%的非晶/微晶硅叠层电池。  相似文献   

13.
We report on the use of pulsed plasma-enhanced chemical vapor deposition (P-PECVD) technique and show that “state-of-the-art” amorphous silicon (a-Si:H) materials and solar cells can be produced at a deposition rate of up to 15 Å/s using a modulation frequency in the range 1–100 kHz. The approach has also been developed to deposit materials and devices onto large area, 30 cm×40 cm, substrates with thickness uniformity (<5%), and gas utilization rate (>25%). We have developed a new “hot wire” chemical vapor deposition (HWCVD) method and report that our new filament material, graphite, has so far shown no appreciable degradation even after deposition of 500 μm of amorphous silicon. We report that this technique can produce “state-of-the-art” a-Si:H and that a solar cell of p/i/n configuration exhibited an initial efficiency approaching 9%. The use of microcrystalline silicon (μc-Si) materials to produce low-cost stable solar cells is gaining considerable attention. We show that both of these techniques can produce thin film μc-Si, dependent on process conditions, with 1 1 1 and/or 2 2 0 orientations and with a grain size of approx. 500 A. Inclusion of these types of materials into a solar cell configuration will be discussed.  相似文献   

14.
Microcrystalline silicon (μc-Si:H) prepared by plasma-enhanced chemical vapor deposition (PECVD) has been investigated as material for absorber layers in solar cells. The deposition process has been adjusted to achieve high deposition rates and optimized solar cell performance. In particular, already moderate variations of the crystalline vs. amorphous volume fractions were found to effect the electronic material – and solar cell properties. Such variation is readily achieved by changing the process gas mixture of silane to hydrogen. Best cell performance was found for material near the transition to the amorphous growth regime. With this optimized material efficiencies of 7.5% for a 2 μm thick μc-Si:H single solar cell and 12% for an a-Si:H/μc-Si:H stacked solar cell have been achieved.  相似文献   

15.
We have investigated the photovoltaic (PV) characteristics of both glow discharge deposited hydrogenated amorphous silicon (a-Si:H) on crystalline silicon (c-Si) in a n+ a-Si:H/undoped a-Si:H/p c-Si type structure, and DC magnetron sputtered a-Si:H in a n-type a-Si:H/p c-Si type solar cell structure. It was found that the PV properties of the solar cells were influenced very strongly by the a-Si/c-Si interface. Properties of strongly interface limited devices were found to be independent of a-Si thickness and c-Si resistivity. A hydrofluoric acid passivation prior to RF glow discharge deposition of a-Si:H increases the short circuit current density from 2.57 to 25.00 mA/cm2 under 1 sun conditions.DC magnetron sputtering of a-Si:H in a Ar/H2 ambient was found to be a controlled way of depositing n type a-Si:H layers on c-Si for solar cells and also a tool to study the PV response with a-Si/c-Si interface variations. 300 Å a-Si sputtered onto 1–10 ω cm p-type c-Si resulted in 10.6% efficient solar cells, without an A/R coating, with an open circuit voltage of 0.55 V and a short circuit current density of 30 mA/cm2 over a 0.3 cm2 area. High frequency capacitance-voltage measurements indicate good junction characteristics with zero bias depletion width in c-Si of 0.65 μm. The properties of the devices have been investigated over a wide range of variables like substrate resistivity, a-Si thickness, and sputtering power. The processing has focused on identifying and studying the conditions that result in an improved a-Si/c-Si interface that leads to better PV properties.  相似文献   

16.
Undoped hydrogenated amorphous silicon (a-Si:H)/p-type crystalline silicon (c-Si) structures with and without a microcrystalline silicon (μc-Si) buffer layer have been investigated as a potential low-cost heterojunction (HJ) solar cell. Unlike the conventional HJ silicon solar cell with a highly doped window layer, the undoped a-Si:H emitter was photovoltaically active, and a thicker emitter layer was proven to be advantageous for more light absorption, as long as the carriers generated in the layer are effectively collected at the junction. In addition, without using heavy doping and transparent front contacts, the solar cell exhibited a fill factor comparable to the conventional HJ silicon solar cell. The optimized configuration consisted of an undoped a-Si:H emitter layer (700 Å), providing an excellent light absorption and defect passivation, and a thin μc-Si buffer layer (200 Å), providing an improved carrier collection by lowering barrier height at the interface, resulting in a maximum conversion efficiency of 10% without an anti-reflective coating.  相似文献   

17.
We simulated device characteristics of a-Si:H single junction, μc-Si:H single junction and a-Si:H/μc-Si:H tandem solar cells with the numerical device simulator Advanced Semiconductor Analysis (ASA). For this purpose we measured and adjusted electrical and optical input parameters by comparing measured and simulated external quantum efficiency, current−voltage characteristic and reflectivity spectra. Consistent reproducibility of experimental data by numerical simulation was achieved for all types of cells investigated in this work. We also show good correspondence between the experimental and simulated characteristics for a-Si:H/μc-Si:H tandem solar cells with various absorber thicknesses on both Asahi U-type SnO2:F and sputtered/etched (Jülich) ZnO:Al substrates. Based on this good correlation between experiment and theory, we provide insight into device properties that are not directly measurable like the spatially resolved absorptance and the voltage-dependent carrier collection. These data reveal that the difference between tandem solar cells grown on Asahi U-type and Jülich ZnO substrates primarily arises from their optical properties. In addition, we find out that the doped layers do not contribute to the photocurrent except for the front p-layer. We also calculated the initial efficiencies of a-Si:H/μc-Si:H tandem solar cells with different combinations of a-Si:H and μc-Si:H absorber layer thicknesses. The maximum efficiency is found at 260 nm/1500 nm for tandem solar cells on Asahi U-type substrates and at 360 nm/850 nm for tandem solar cells on Jülich ZnO substrates.  相似文献   

18.
The growth kinetics and optoelectronic properties of intrinsic and doped microcrystalline silicon (μc-Si:H) films deposited at low temperature have been studied combining in situ and ex situ techniques. High deposition rates and preferential crystallographic orientation for undoped films are obtained at high pressure. X-ray and Raman measurements indicate that for fixed plasma conditions the size of the crystallites decreases with the deposition temperature. Kinetic ellipsometry measurements performed during the growth of p-(μc-Si:H) on transparent conducting oxide substrates display a remarkable stability of zinc oxide, while tin oxide is reduced at 200°C but stable at 150°C. In situ ellipsometry, conductivity and Kelvin probe measurements show that there is an optimum crystalline fraction for both phosphorous- and boron-doped layers. Moreover, the incorporation of p-(μc-Si:H) layers produced at 150°C in μc-Si:H solar cells shows that the higher the crystalline fraction of the p-layer the better the performance of the solar cell. On the contrary, the optimum crystalline fraction of the p-layer is around 30% when hydrogenated amorphous silicon (a-Si:H) is used as the intrinsic layer of p–i–n solar cells. This is supported by in situ Kelvin probe measurements which show a saturation in the contact potential of the doped layers just above the percolation threshold. In situ Kelvin probe measurements also reveal that the screening length in μc-Si:H is much higher than in a-Si:H, in good agreement with the good collection of microcrystalline solar cells  相似文献   

19.
We developed microcrystalline silicon (μc-Si:H) thin film solar modules on textured ZnO-coated glass. The single junction (p–i–n) cell structure was prepared by plasma-enhanced chemical vapour deposition (PECVD) at substrate temperatures below 250 °C. Front ZnO and back contacts were prepared by sputtering. A process for the monolithic series connection of μc-Si:H cells by laser scribing was developed. These microcrystalline p–i–n modules showed aperture area efficiencies up to 8.3% and 7.3% on aperture areas of 64 and 676 cm2, respectively. The temperature coefficient of the efficiency was −0.4%/K.  相似文献   

20.
A novel route to a polycrystalline silicon thin-film solar cell   总被引:1,自引:0,他引:1  
An alternative approach is described for the fabrication of a polycrystalline silicon thin-film solar cell on inexpensive substrates. In a first step amorphous silicon is recrystallized in an aluminum-induced crystallization process forming a large-grained polycrystalline silicon layer on glass or metal substrates. In a second step this layer is used as a template for epitaxial growth of the absorber layer (2–3 μm thick) at T<600 °C using ion-assisted deposition techniques. The third step consists of the formation of an a-Si:H/c-Si heterojunction by depositing an a-Si:H emitter from the gas phase. It will be shown that each of these steps has been successfully developed and can now be implemented in a solar cell process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号