首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2−xLaxAlNbO7 (0 ≤ x ≤ 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi1.8La0.2AlNbO7 was about 2 times higher than that of nondoped Bi2AlNbO7. The increased photocatalytic activity of La-doped Bi2AlNbO7 was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.  相似文献   

2.
LiMn2O4 spinel cathode materials were coated with 1.0, 2.0 and 3.0 wt.% of La2O3 by polymeric process, followed by calcinations at 850 °C for 6 h in air. The surface coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and XPS. XRD patterns of La2O3-coated LiMn2O4 revealed that the coating did not affect the crystal structure and space group Fd3m of the cathode materials, compared to the uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using scanning electron microscopy and the TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 100 nm. XPS data illustrated that the La2O3 was completely coated over the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and La2O3-coated LiMn2O4 cathode materials were carried out in the potential range of 3.0 and 4.5 V at 30 °C and 60 °C. Among them, 2.0 wt.% of La2O3-coated spinel LiMn2O4 cathode has improved the structural stability, high reversible capacity and excellent electrochemical performances of the rechargeable lithium batteries.  相似文献   

3.
AgInS2 nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS2 nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO2−xNx, AgInS2 has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O2), hydrogen peroxides (H2O2) and holes (h+) were the mainly active species for the degradation of organic pollutants over AgInS2. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS2 was proposed.  相似文献   

4.
Nitrogen doped anatase TiO2 (N-TiO2) were prepared by hydrothermally treating TiN with H2O2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS), Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirmed that the hydrothermal oxidation is an effective method to prepare N-doped TiO2 anatase. The nitrogen concentration in TiO2 could be controlled by the concentration of H2O2 solution. Photocatalytic degradation of methyl orange (MO) was carried out under visible light and UV-visible light irradiation, respectively. The as-prepared optimal N-TiO2 showed higher photocatalytic activity than N-P25 and P25, and exhibited excellent reusability.  相似文献   

5.
Highly oriented SrMoO3 thin films have been fabricated by pulsed laser deposition of SrMoO4 in hydrogen. The films are found to grow along the (1 0 0) direction on LaAlO3 (1 0 0) and SrTiO3 (1 0 0) substrates. The method has been extended for the fabrication of oxynitride thin films, using ammonia as the reducing medium. The resistivity measurements show nonlinear temperature dependent (Tn) behaviour in the temperature interval of 10-300 K. The conduction mechanism is largely affected by the strain due to the substrate lattice. A combination of T and T2 dependence of resistivity on temperature is observed for films having lesser lattice mismatch with the substrate. The X-ray photoelectron spectroscopic studies confirm the formation of SrMoO3 and SrMoO3−xNx films.  相似文献   

6.
SnO2-TiO2 composite thin films were fabricated on soda-lime glass with sol-gel technology. By measuring the contact angle of the film surface and the degradation of methyl orange, we studied the influence of SnO2 doping concentration, heat-treatment temperature and film thickness on the super-hydrophilicity and photocatalytic activity of the composite films. The results indicate that the doping of SnO2 into TiO2 can improve their hydrophilicity and photocatalytic activity, and the composite film with 1-5 mol% SnO2 and heat-treated at 450°C is of super-hydrophilicity. The optimal SnO2 concentration for the photocatalytic activity is 10 mol% and larger film thickness is helpful to reduce the contact angle of the composite films.  相似文献   

7.
In preparation for synthesizing LaCoO3, gel was prepared by adding citric acid to the aqueous solution of La(NO3)3·6H2O and Co(NO3)2·6H2O. The infrared spectrum indicates that the gel prepared with 0.007 mol of citric acid is the mixture of LaCo(C6H5O7)(NO3)3, lanthanum nitrate, and cobalt nitrate, while the gel prepared with 0.011 mol of citric acid is LaCo(C6H5O7)2. Perovskite-type LaCoO3 was obtained by firing the gel above 600°C. The LaCoO3 surface was characterized by X-ray photoelectron spectroscopy and with respect to the catalytic activity of CO oxidation.  相似文献   

8.
Fe-doped TiO2 nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO2 nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO2 nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.  相似文献   

9.
Aluminium oxide being environmentally stable and having high transmittance is an interesting material for optoelectronics devices. Aluminium oxide thin films have been successfully deposited by hot water oxidation of vacuum evaporated aluminium thin films. The surface morphology, surface roughness, optical transmission, band gap, refractive index and intrinsic stress of Al2O3 thin films were studied. The cost effective vapor chopping technique was used. It was observed that, optical transmittance of vapor chopped Al2O3 thin film showed higher transmittance than the nonchopped film. The optical band gap of vapor chopped thin film was higher than the nonchopped Al2O3, whereas surface roughness and refractive index were lower due to vapor chopping.  相似文献   

10.
Nanosized Bi2WO6, PbWO4 and ZnWO4 photocatalysts were synthesized by a mild hydrothermal crystallization process. The physical and photophysical properties of the catalysts were characterized by X-ray diffractometry, Brunauer-Emmet-Teller surface area and porosity measurements, transmission electron microscopy, Raman spectra, and diffused reflectance spectroscopy. The rhodamine-B photodegradation in aqueous medium was employed as a probe reaction to test the photoactivities of the as-prepared samples under four irradiation wavelengths. Bi2WO6 not only presented the photocatalytic activity in the wide spectral scope, including UV and visible light but also exhibited the strong photosensitized capability to transform RhB under visible light irradiation (λ > 490 nm). ZnWO4 only displayed relatively high photoactivity under UV irradiation. However, PbWO4 showed poor photoactivity under any light irradiation. On the basis of the calculated density functional theory (DFT), the photocatalytic mechanisms were discussed.  相似文献   

11.
Different compositions of [CuMoO4]x-doped Bi2Ti4O11 nanophotocatalyst (x = 0.05, 0.1, 0.5) have been prepared by chemical precursor decomposition (CPD) method using triethanolamine (TEA) and HNO3. Cu(II) is one of reactive species on the catalyst surface and Mo(VI) ion helps to generate charge compensation of lattice having poor catalytic properties. The photocatalytic properties based on the prepared samples for photodecolorization of thymol blue (TB) solutions are examined by Hg-lamp. The crystal structures of the prepared nano-powders are characterized by XRD, EDAX, UV-vis spectra, specific surface area (BET), and HRTEM analyses. The average particle size of copper molybdate-doped bismuth titanate ranges 32 ± 5 nm measured from TEM. Results show doping of copper molybdate of 5 mol% with bismuth titanate can significantly increase the photoactivity of bismuth titanate compared all the compositions studied except degussa P25 titania. The observed increased photocatalytic activity of copper molybdate-doped bismuth titanate ((CuMoO4)x(Bi2Ti4O11)1−x; CMxBT1−x) is attributed to the strong absorption of OH groups at the surface of the catalyst.  相似文献   

12.
For the purpose of obtaining oxide thin films with high photocatalytic activity, we have successfully prepared the TiO2 anatase polycrystalline films with a two-dimensional spinodal phase-separated structure (2D-SPSS) in micron size by the sol-gel dip-coating method from a titanium tetraisopropoxide solution containing polyoxyethylene(20) nonylphenyl ether. It has been also found that TiO2 films with a variety of morphologies in addition to the 2D-SPSS can be formed by controlling the molar ratio of water to titanium tetraisopropoxide. The methylene blue photodegradation activity of the 2D-SPSS TiO2 film was higher than that of dense TiO2 film prepared from a TiO2 sol without co-existing polymer. This fact can be interpreted in terms of possessing a high specific surface area available for the photocatalytic reaction.  相似文献   

13.
In order to investigate the catalytic properties, V2,38Nb10,7O32,7, VNb9O25 and solid solutions of V2O5 in TT-Nb2O5 were prepared by thermal decomposition of freeze-dried oxalate precursors. The samples were characterised by X-ray diffraction and surface area determination. The crystalline samples are capable of the intercalation of sodium and lithium ions from solution. Above a temperature of about 500 °C, in dependence on the oxygen partial pressure a reversible release and uptake of oxygen without a structural variation takes place. The catalytic properties have been evaluated for the oxidative dehydrogenation (ODH) of propane and propene. There are only small differences in the catalytic activity of the different crystalline samples. Because of the relative high starting temperature, a selective catalytic oxidation of propane to propene is hardly observed.  相似文献   

14.
《Materials Research Bulletin》2013,48(11):4942-4946
Ag modified SnO2/TiO2 nanoparticles were successfully prepared by a modified sol–gel method, without adding any acid or alkali. The entire preparation differs from the traditional sol–gel synthesis of TiO2 that the reaction can get controlled by adjusting the flow speed of water vapor. Ultraviolet–visible diffuse reflectance spectra (UV–vis) and spin-trapping electron paramagnetic resonance (EPR) were used to forecast the photocatalytic activity of the samples, and the results were proved by the degradation of methylene blue solution under visible light. Compared with pure TiO2, as-prepared Ag modified SnO2/TiO2 nanoparticles exhibited not only an enhanced photocatalytic activity but also an improved stability. Among all of samples, the composite with 0.5% of Ag and 1% of Sn showed the best photocatalytic performance and stability. Further increasing the Ag proportion will result in the decrease of the photocatalytic activity. A relative mechanism was proposed and discussed in detail.  相似文献   

15.
An efficient method for the preparation of N-F-codoped visible light active TiO2 nanorod arrays is reported. In the process, simultaneous nitrogen and fluorine doped TiO2 nanorod arrays on the glass substrates were achieved by liquid phase deposition method using ZnO nanorod arrays as templates with different calcination temperature. The as-prepared samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra measurements. It was found that calcination temperature is an important factor influencing the microstructure and the amount of N and F in TiO2 nanorod arrays samples. The visible light photocatalytic properties were investigated using methylene blue (MB) dye as a model system. The results showed that N-F-codoped TiO2 nanorod arrays sample calcined at 450 °C demonstrated the best visible light activity in all samples, much higher than that of TiO2 nanoparticles and P25 particles films.  相似文献   

16.
Pt/CeO2-ZrO2-Bi2O3 catalysts for catalytic combustion of acetaldehyde, which is one of volatile organic compounds (VOCs), were prepared by a wet impregnation method in the presence of polyvinylpyrrolidone K25 (PVP). The addition of PVP in the preparation process was effective to enhance the specific surface area and the Pt2+ ratio on the surface. Additionally, the pore volume and size of the catalysts were modified by the PVP addition. The Pt/CeO2-ZrO2-Bi2O3 catalysts are specific for the total acetaldehyde oxidation and CO and any acetaldehyde-derivative compounds were not observed as by-products. The catalytic activity of the Pt/CeO2-ZrO2-Bi2O3 catalysts was significantly promoted by the PVP addition and the total oxidation temperature decreased. By the optimization of the amount of platinum, the complete oxidation of acetaldehyde was realized at a temperature as low as 140 °C on a 10 wt%Pt/CeO2-ZrO2-Bi2O3 catalyst.  相似文献   

17.
Bi2YVO8 was prepared by solid-state reaction for the first time. The structural and photocatalytic properties of Bi2YVO8 were studied. The results showed that this compound has the tetragonal crystal system with space group I4/mmm. The band gap of Bi2YVO8 was estimated to be about 2.09 eV by plotting (αhν)2 versus and obtaining the axis intercept value according to Tauc's equation. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2YVO8 as the photocatalyst under ultraviolet light irradiation (wavelength = 390 nm). Degradation of aqueous methylene blue photocatalyzed by this compound was investigated under visible light irradiation. Bi2YVO8 showed higher photocatalytic activity compared to Bi2YTaO7, Bi2InTaO7 or TiO2 (P-25). Complete removal of aqueous methylene blue was achieved after visible light irradiation for 170 min. The decrease of the total organic carbon and the formation of inorganic products such as SO42− and NO3 revealed the continuous mineralization of aqueous methylene blue during photocatalytic reaction.  相似文献   

18.
Lithium ion was successfully introduced into La1/3NbO3 with an A-site-deficient perovskite-type structure. The crystal structure and transport properties of La1/3LixNbO3 were investigated as a function of Li content (x = 0-0.59). The lattice parameters of La1/3LixNbO3 with an orthorhombic cell were enlarged with increasing Li content for x ≤ 0.3, and the structure was transformed to a pseudo-tetragonal cell for x = 0.44. The temperature dependence of electrical resistivity gradually changed from insulating to metallic with increasing x, and thermoelectric power measurement indicated that the carriers were electrons. In X-ray photoelectron spectra of the incorporated samples, Nb3d4+ peaks appeared in addition to Nb3d5+ peaks, which was consistent with the change of the transport properties. In spite of the success of metallization, no diamagnetic signal indicative of supercondcutivity was observed in La1/3Li0.59NbO3 down to 1.8 K.  相似文献   

19.
In order to obtain CO2-absorbents to eliminate CO2 concentration locally, Bi2O3-La2O3 mixed powders were prepared by mechanical alloying (MA) method using a planetary ball-milling machine. CO2-absorption and desorption properties were checked by TG-DTA for the obtained powder samples. As a result, the sample shown by (Bi2O3)1−x(La2O3)x [x≤0.50] was found to form α-Bi2O3-solid solution with repeated CO2-adsorption and desorption around 400- 500 °C. Absorbed and desorbed CO2 contents varied with MA time: the 72 h MA’ed sample had a larger CO2 content than the 24 h MA’ed sample. The performance depended on the sample composition, and (Bi2O3)0.70(La2O3)0.30 was found to have the highest performance in the present system.  相似文献   

20.
ZnO-TiO2 nanocomposite was prepared by modified ammonia-evaporation-induced synthetic method. It was characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray, UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. Incorporation of ZnO leads to visible light absorption, larger charge transfer resistance and lower capacitance. The nanocomposite effectively catalyzes the inactivation of E. coli under visible light. Further, the prepared nanocomposite displays selective photocatalysis. While its photocatalytic efficiency to detoxify cyanide with visible light is higher than that of TiO2 P25, its efficiency to degrade methylene blue, sunset yellow and rhodamine B dyes under UV-A light is less than that of TiO2 P25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号