首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead-free piezoelectric ceramics (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 have been synthesized by traditional ceramics process without cold-isostatic pressing. The effect of the content of LiNbO3 and the sintering temperature on the phase structure, the microstructure and piezoelectric properties of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics were investigated. The result shows that the phase structure transforms from the orthorhombic phase to tetragonal phase with the increase of the content of LiNbO3, and the orthorhombic and tetragonal phase co-exist in (K0.5Na0.5)NbO3-LiNbO3 ceramics when the content of LiNbO3 is about 0.06 mol. The sintering temperature of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 decreases with the increase of the content of LiNbO3. The optimum composition for (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics is 0.94(K0.5Na0.5)NbO3-0.06LiNbO3. The optimum sintering temperature of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramics is 1080 °C. Piezoelectric properties of 0.94 (K0.5Na0.5)NbO3-0.06LiNbO3 ceramics under the optimum sintering temperature are piezoelectric constant d33 of 215 pC/N, planar electromechanical coupling factor kp of 0.41, thickness electromechanical coupling factor kt of 0.48, the mechanical quality factor Qm of 80, the dielectric constant of 530 and the Curie temperature Tc = 450 °C, respectively. The results indicate that 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 piezoelectric ceramics is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

2.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

3.
The crystal structure and microwave dielectric properties of the (Sm1−xYx)(Ti1.5W0.5)O6 (x = 0 and 0.5) ceramics sintered at 1375 °C for 2-50 h were investigated in this study. No secondary phase was observed in the samples sintered for various sintering times, whereas a secondary phase was formed in the (Sm0.5Y0.5)(Ti1.5W0.5)O6 ceramic sintered at 1400 °C for 50 h. As for the microstructure analysis, the formation of the liquid phase was observed in the both of the samples sintered for 20 and 50 h. The formation of the liquid phase is related to the compositional change of Ti and W from the stoichiometric composition of the samples caused by the instability of crystal structure. The dielectric constants were increased with increased sintering time in the both of the samples, though variations in the temperature coefficient of resonant frequency of the samples were not recognized with the variation in the sintering time. Moreover, although the quality factors of the each sample increased with increasing the sintering time from 2 to 10 h, decreases in the quality factors were recognized when the sintering time was over 10 h.  相似文献   

4.
Rare earth and alkaline earth co-doped Ce0.85La0.10Ca0.05O2−δ electrolyte material with the powder obtained by solid-state reaction method was sintered at 1300, 1400, 1500 and 1600 °C respectively. The results showed that the ionic conductivity of the sample sintered at 1400 °C was slightly lower compared to that sintered at 1500 °C in the temperature range of 300-550 °C, while the sample sintered at 1400 °C showed the highest ionic conductivity in all the samples above 550 °C. The ionic conductivity of ∼0.021 S/cm at 600 °C and the relative density of 98.2% were observed for the sample sintered at 1400 °C. In addition, the highest flexural strength with 145 MPa was also obtained for the sample sintered at 1400 °C. It suggested that the sintering temperature for Ce0.85La0.10Ca0.05O2−δ electrolyte may be reduced to as low as 1400 °C with desired properties.  相似文献   

5.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure and dielectric properties of NBCTO ceramics sintered at various temperatures with different soaking time were investigated. Pure NBCTO phase could be obtained with increasing the temperature and prolonging the soaking time. High dielectric permittivity (13,495) and low dielectric loss (0.031) could be obtained when the ceramics were sintered at 1000 °C for 7.5 h. The ceramics sintered at 1000 °C for 7.5 h also showed good temperature stability (−4.00 to −0.69%) over a large temperature range from −50 to 150 °C. Complex impedances results revealed that the grain was semiconducting and the grain boundaries was insulating. The grain resistance (Rg) was 12.10 Ω cm and the grain boundary resistance (Rgb) was 2.009 × 105 Ω cm when the ceramics were sintered at 1000 °C for 7.5 h.  相似文献   

6.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

7.
Ba2(Zn0.5Ti0.5X)O6 compounds from the general ABO3 perovskite family were synthesized by the classical solid-state route for X = Nb and Ta with various A/B ratios (1.005, 1 and 0.995). After the calcination step at 1100 °C, both compounds (X = Nb and Ta) contain mainly the cubic disordered ‘Ba2(Zn0.5Ti0.5X)O6’ phase but traces of BaTiO3 and secondary phases are often detectable. Nevertheless, after the sintering stage at higher temperature (from 1300 to 1500 °C) and for all A/B ratios investigated, Ti enters into the cubic perovskite structure, resulting in the formation of a unique ‘Ba2(Zn0.5Ti0.5X)O6’ phase. Attractive dielectric properties have been measured on the tantalum-based compound for A/B = 0.995 (Q ∼2000 at 7.4 GHz and ? = 39.6) as well as on the niobium-based phase for A/B = 1.005 (Q ∼2200 at 6.1 GHz and ? = 54.8). All these characteristics were confirmed at 1 MHz and a linear dependence of the permittivity versus temperature from −60 to 180 °C has also been evidenced for both formulations. Sinterability, dielectric properties and microstructure of such compounds are discussed with respect to the stoichiometry.  相似文献   

8.
The continuing development of new materials suitable for solid oxide fuel cells operating at about 650-800 °C is of great interest in recent days. The present investigation deals with the development of a perovskite composition-LaNi0.6Fe0.4O3 (LNF)-prepared following two combustion synthesis routes: citrate-gel (LNC) and urea (LNU). The powders were sintered over a wide temperature range (900-1400 °C) and sintering behavior for LNC and LNU was compared. The thermal expansion coefficient (TEC), electrical and microstructural characteristics of LNF was thoroughly investigated. Electrical conductivities were found to be one and a half times higher than that of most commonly used cathode material, La(Sr)MnO3. Moreover, the TEC value of LNF was found to be ≈11.4×10−6 K−1 at 800 °C. The study opens up a possibility of using LNF as a promising cell component for SOFC.  相似文献   

9.
The addition of a small amount of CuO to the 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 (0.95NKN-0.05CT) ceramics sintered at 960 °C for 10 h produced a dense microstructure with large grains due to the liquid phase sintering. Due to the negligible Na2O evaporation, poling was easy for all specimens sintered at 960 °C. The piezoelectric properties of the specimens were considerably influenced by the relative density, grain size and liquid phase amount. The high piezoelectric properties of d33 = 200 pC/N, kp = 0.37, and Qm = 350 were obtained for the 0.95NKN-0.05CT ceramics containing 2.0 mol% CuO sintered at 960 °C for 10 h. Therefore, the 0.95NKN-0.05CT ceramics containing a small amount of CuO are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

10.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

11.
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.  相似文献   

12.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

13.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

14.
Boride ceramics are useful materials because of their high strengths, hardness and melting points, which allow them to be used as high-temperature structural materials. In this study, sintered bodies of a solid solution of ZrB2-TiB2 system were prepared using hot pressing (HP) and spark plasma sintering (SPS). The sintering behavior was evaluated, and the effect of pulverization on sinterability and reactivity was examined using a Nanomizer. The combination of SPS processing at 2200 °C and pulverization yielded a nearly single-phase Zr0.5Ti0.5B2 solid solution having a relative density of 95%.  相似文献   

15.
Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Si(OC2H5)4, LiNO3 and Bi(NO3)3·5H2O as raw materials, CaO-MgO-SiO2 submicron powders were prepared at low temperature by sol-gel method. The crystallization temperature was decreased enormously by the introduction of Li-Bi liquid phase sintering aids into Ca-Mg-Si sol, and the powders with average particle sizes of 80-100 nm and 200-400 nm were obtained at the calcining temperature of 750 °C and 800 °C, respectively. The sintering characteristic and dielectric properties of powders calcined at 750 °C with different content of powders calcined at 800 °C were studied. When the content of powders calcined at 800 °C was 10 wt%, the dielectric ceramic sintered at 890 °C had compact structure, and possessed excellent microwave dielectric properties: ?r = 7.16, Q × f = 25630 GHz, τf = −69.26 ppm/°C.  相似文献   

16.
Synthesis of BaTi4O9 ceramics by a reaction-sintering process was investigated. The mixture of raw materials for stoichiometric BaTi4O9 were pressed and sintered into ceramics without any calcination stage involved. Pure BaTi4O9 phases were obtained at 1150-1280 °C. High-sintered density, 98.2-99.5% of theoretical value (4.533 g/cm3), can be obtained for pellets sintered at 1200-1280 °C for 2-6 h. Some rod-shaped grains 3-7 μm in the longitudinal axis appear in pellets sintered at 1230 °C. Both the size and the amount of these rod-shaped grains increase at higher sintering temperature.  相似文献   

17.
(1 − x) (0.95K0.5Na0.5NbO3-0.05LiSbO3)-xBiScO3 lead-free piezoceramics have been fabricated by an ordinary pressure-less sintering process. The relationship between the BS content, phase structure, density, and piezoelectric properties and their temperature stability was discussed particularly. All compositions show a main perovskite structure, showing room-temperature symmetries of orthorhombic at = 0, of tetragonal at 0.002 ≤ x ≤ 0.01. When 0.002 ≤ x ≤ 0.008, the ceramics have excellent electrical properties of d33 = 265-305 pC/N, kp = 45-54%, ?r = 1346-1638, Curie temperature Tc = 315-370 °C and depolarizing temperature Td = 315-365 °C, comparable to that of other KNN-based piezoceramics. The results indicate that the ceramics are promising lead-free piezoelectric materials.  相似文献   

18.
The crystal structure, thermal expansion rate, electrical conductivity and electrochemical performance of Sm0.5Sr0.5MxCo1−xO3−δ (M = Fe, Mn) have been investigated. Two crystal structures have been observed in the specimens of Sm0.5Sr0.5FexCo1−xO3−δ (SSFC) at room temperature, the perovskite structure of SSFC has an orthorhombic symmetry for 0 ≤ x ≤ 0.4 and a cubic symmetry for 0.5 ≤ x ≤ 0.9. The specimens of Sm0.5Sr0.5MnxCo1−xO3−δ (SSMC) crystallize in an orthorhombic structure. The adjustment of thermal expansion rate to electrolyte, which is one of the main problems of SSC, can be achieved to lower TEC values with more Fe and Mn substitution. Especially, Sm0.5Sr0.5Mn0.8Co0.2O3−δ exhibits good thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3. High electrical conductivities are obtained for all the specimens and they demonstrate above 100 S/cm at 800 °C in SSFC system. The polarization resistance increases with increasing Mn content, Nevertheless, the polarization resistance of SSFC increases with increasing Fe content, but when the amount of Fe reaches to 0.4, the maximum is obtained while the resistance will decrease when the amount of Fe reaches above 0.4. Sm0.5Sr0.5Fe0.8Co0.2O3−δ electrode exhibits high catalytic activity for oxygen reduction operating at temperature from 700 to 800 °C.  相似文献   

19.
The polyaniline (PAni)/Co0.5Zn0.5Fe2O4 nanocomposite was prepared by an in situ polymerization in an aqueous solution. The products were characterized by Fourier transform infrared (FT-IR) spectrometer, ultraviolet-visible (UV-vis) spectrometer, X-ray diffraction (XRD) and transmission electron microscope (TEM). The average particle size of the PAni/Co0.5Zn0.5Fe2O4 was estimated to be about 70 nm by TEM. The reflection loss (dB) of the nanocomposite was measured at different microwave frequencies in X-band (8.2-12.4 GHz), U-band (12.4-18 GHz) and K-band (18-26.5 GHz) by radar cross-section (RCS) method according to the national standard GJB-2038-94. The results showed the reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was higher than that of the PAni. The maximum reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was about −39.9 dB at 22.4 GHz with a bandwidth of 5 GHz (full frequency width at about a half of the peak response). In conclusion, this sample is a good microwave shielding and absorbing materials at higher frequency.  相似文献   

20.
Nanopowder of Ca0.96Sm0.04MnO3 (CSM) perovskite was prepared by chemical co-precipitation technique. It was characterized and studied by X-ray diffraction and Transmission Electron Microscopy. Nano-crystalline CSM phase having grain size of 60-70 nm can be prepared by calcination at 1073 K for 6 h in air. The obtained nanopowder was pressed, sintered at 1373 K for 24 h to obtain a dense sample. In comparison, CSM samples prepared from normal powder need sintering temperature of 1623 K to reach a similar microstructure, showing the efficiency of nanopowder to decrease the sintering temperature. The thermoelectric properties of samples prepared with two different processes were studied. The Seebeck coefficient and the thermal conductivity slightly decrease by using the nanopowder while the value of the electrical resistivity does not change. This results in the same figures of merit for the two materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号