首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystalline flower-like Bi2S3 nanostructures were successfully synthesized via a simple, facile and green hydrothermal method, with the assistance of D-penicillamine. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and found their morphologies mainly depend on the ratios of Bi3 + to D-penicillamine, as well as the reaction temperature and time. And the possible growth mechanism has been discussed in some detail. In addition, the as-prepared Bi2S3 nanoflowers show good hydrogen storage ability. This strategy can be potentially expanded to prepare other metal chalcogenides materials.  相似文献   

2.
Bismuth sulfide nanorods and nano-structured flowers were synthesized by hydrothermal reaction of bismuth nitrate pentahydrate and thiourea solutions, containing 1 and 2 ml of 65% HNO3, respectively. By using X-ray diffraction (XRD), selected area electron diffraction (SAED), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), the products were specified as orthorhombic Bi2S3 in the shapes of nanorods and flower-like clusters of nanorods, with the growth of nanorods in the [001] direction. A diffraction pattern was also simulated, and was in good accordance with the SAED pattern obtained from the experiment.  相似文献   

3.
Three-dimensional snowflake-like bismuth sulfide nanostructures were successfully synthesized by simple refluxing at 160 °C in ethylene glycol, using bismuth citrate and thiourea as reactants. The crystal structures and morphologies of the products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX). The Bi2S3 nanostructure was built up by highly ordered one-dimensional Bi2S3 nanorods, which was aligned in an orderly fashion. Ethylene glycol plays a critical role in the creation of bismuth sulfide three-dimensional nanostructures, which serves as an excellent solvent and structure director. Bismuth citrate, a linear polymer, also makes for the formation of the three-dimensional nanostructures.  相似文献   

4.
In this work, Bi2WO6 with complex morphologies, namely, flower-like, pancake-like, and tubular shapes have been controllably synthesized by a facile solvothermal process. The as-obtained samples are systematically investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effects of solvents on the morphologies of Bi2WO6 nanostructures are systematically investigated. According to the time-dependent experiments, a two-step growth mode basing on Ostwald ripening process and self-assembly has been proposed for the formation of the flower-like and pancake-like Bi2WO6 nanostructures. The photocatalytic properties of Bi2WO6 nanostructures are strongly dependent on their shapes, sizes, and structures for the degradation of rhodamine B (RhB) under visible-light irradiation. The deduced reasons for the differences in the photocatalytic activities of these Bi2WO6 nanostructures are further discussed.  相似文献   

5.
《Materials Letters》2006,60(17-18):2294-2298
Single-crystalline Bi2S3 nanocrystals with urchinlike and rod-like morphologies have been successfully synthesized using Bi2O3, HCl, Na2S2O3 and ethylene glycol (EG) by a simple and fast microwave heating method. Both urchinlike and rod-like Bi2S3 nanostructures could be formed under microwave heating at 190 °C for 30 s. Urchin-like Bi2S3 nanostructures were prepared using sodium dodecyl sulfate (SDS) or in the absence of any surfactant. However, Bi2S3 nanorods were obtained in the presence of cetyltrimethylammonium bromide (CTAB). The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED) and ultraviolet-visible (UV-Vis) absorption spectra.  相似文献   

6.
Novel flower-like CeF3 nanostructures with a mean diameter of 190 nm were successfully synthesized via a rapid and facile microwave irradiation route using ethylenediaminetetraacetic acid disodium as the complexing reagent. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and photoluminescence (PL). XRD patterns showed that the CeF3 nanoflowers were hexagonal phase and had good crystallinity and purity. TEM and SEM images showed that the as-prepared CeF3 samples displayed 3D flower-like nanostructures and had uniform sizes and morphologies. The experimental results revealed that the as-prepared CeF3 nanoflowers might be assembled by nanodisks. The formation process of the CeF3 nanoflowers was preliminarily investigated.  相似文献   

7.
Different morphologies of nanostructured bismuth sulfide (Bi2S3) including nanotubes and nanorods have been prepared by solvothermal synthesis at a low temperature of 120 °C for 12 h using various mixed solvents as the reaction medium and urea as the mineralizer. X-ray diffraction analysis showed that all the as-prepared Bi2S3 samples are orthorhombic phase. Transmission electron microscopy analysis showed that the morphologies of the nanostructures are mainly related to the viscosity and surface tension of the mixed solvent used in the solvothermal synthesis.  相似文献   

8.
The synthesis of bismuth tungstate (Bi2WO6) multilayered disk which was constructed by oriented square nanoplates was easily realized via a simple surfactant-free hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were used to investigate the as-obtained product. The results indicated that the three-dimensional (3D) Bi2WO6 multilayered disk was constructed by self-assembly of square nanoplates via a perfect oriented manner. The formation mechanism of the product was carefully investigated on the basis of the results of time-dependent experiments. In addition, studies of the photocatalytic property demonstrated that the as-obtained Bi2WO6 could exhibit excellent visible-light-driven photocatalytic activity for the degradation of Rhodamine B (RhB).  相似文献   

9.
通过液相法制备Bi2Te3纳米管,设计并优化了Co离子的掺磁方案。通过扫描电镜、透射电镜、X射线衍射、红外光谱和能量色散X射线光谱对制备的样品进行了结构表征。实验结果表明,液相法可制备出晶相良好的Bi2Te3纳米管、Co离子均匀掺杂的Bi2Te3纳米结构样品。  相似文献   

10.
Bi2S3 with different morphologies (nanoparticles, nanorods and nanotubes) was synthesized using bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and two kinds of sulfur sources (CH3CSNH2 and NH2CSNH2) in different solvents (water, ethylene glycol and propylene glycol) via a microwave radiation method at 180 W for 20 min. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that all of the products are orthorhombic Bi2S3 phase of nanoparticles, nanorods and nanotubes, influenced by the sulfur sources and solvents. Formation mechanisms of the products with different morphologies are also proposed.  相似文献   

11.
The flower-like, pinon-like and faceted nanoplates (BiO)2CO3 micro/nanostructures were fabricated by a one-pot template-free method based on hydrothermal treatment of the aqueous mixture of bismuth citrate and sodium carbonate. The morphology of (BiO)2CO3 can be simply controlled by the reaction temperature. X-ray diffraction, scanning electron microscopy, UV–vis diffuse reflection spectra, and photoluminescence spectra were applied to analyze the microstructures and properties of the samples. The flower-like and pinon-like (BiO)2CO3 superstructures were hierarchically self-assembled by nanoplates and showed increased light absorption owing to the multiple light reflection between the nanoplates. The thickness of nanoplates was increased with the increasing reaction temperatures due to the preferred growth along the (110) plane. The (BiO)2CO3 with various micro/nanostructures showed morphology-dependent photocatalytic activity toward removal of aqueous RhB. The as-prepared flower-like (BiO)2CO3 microspheres exhibited highest photocatalytic activity due to the large surface area, increased light absorption, enhanced charge carriers separation, and special architectures of hierarchical nanoplates microspheres, exceeding that of the P25.  相似文献   

12.
Bi2S3 hierarchical columniform structures assembled by nanorod-built lamellae have been first synthesized by a simple wet chemical method through the reaction between Bi(NO3)3?5H2O and CS2 at 80 °C for 14 h using DMSO as solvent without any surfactants. These new Bi2S3 structures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Compared to ethylene glycol and DMF, DMSO supplied an excellent chemical environment favorable to the generation of Bi2S3 quickly in heterogeneous condition. The influences of the synthetic parameters were discussed and a possible growth mechanism for the formation of these complex structures was proposed.  相似文献   

13.
Boehmite (AlOOH) with hierarchical flower-like structures was synthesized by the solvothermal reaction of AlCl3·6H2O in the presence of ethanol and toluene at 200 °C for 24 h. The product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that boehmite with flower-like nanostructures, which aggregated together by the weak hydrogen bonds, was formed through dissolution-deposition process of boehmite microcrystals and the toluene has a great effect on the morphology of product in the reaction system. Meanwhile, the γ-Al2O3 was also obtained by calcination of above product at 500 °C for 2 h, and the flower-like morphology kept no change. The surface area of γ-Al2O3 powder was determined to be 166.8 m2/g by N2 adsorption measurement. The possible formation mechanism of flower-like boehmite nanostructures was proposed and discussed.  相似文献   

14.
Here, we report the preparation of hierarchical flower-like (Bi(Bi2S3)9I3)2/3 nanostructures that acts as a strong photocatalyst in the desulfurization of benzothiophene. We optimized the reaction time, type of capping agent and reflux temperature to tune the shape of porous flower-like (Bi(Bi2S3)9I3)2/3 nanostructures to achieve the highest desulfurization performance. We investigated the characteristic shape, size, purity, and optical response of the flower-shape nanostructures using XRD, EDS, FESEM, UV–Vis-DRS analysis. The flower-like (Bi(Bi2S3)9I3)2/3 nanostructures showed a significant photocatalytic property in desulfurization of benzothiophene as a model fuel. The hierarchical flower-like (Bi(Bi2S3)9I3)2/3 photocatalyst with an energy gap of 1.15 eV, exhibits a 92% photocatalytic desulfurization performance after 2 h of visible light irradiation. The (Bi(Bi2S3)9I3)2/3 nanostructures show a high photocatalytic reproducibility after 4 rounds of exposure. We proposed a photo-oxidation mechanism based on the active species scavenging, which revealed the role of photo-produced h+ and O2? species as essential in the photocatalytic desulfurization process. These findings provide a new prospect and design strategy for the development of efficient photocatalysts in desulfurization process.  相似文献   

15.
One-dimensional (1D) bismuth sulfide (Bi2S3) semiconducting nanowires have been successfully synthesized through mircrowave assisted solvothermal technique. The obtained product was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometry. The result shows that the Bi2S3 nanowires are single crystals grown along the [001] (c-axis) direction. The growth of Bi2S3 nanofibers with a preferential direction of c-axis can be ascribed to its particular structure. The optical measurement shows a blue shift relative to the bulk orthorhombic Bi2S3, which might be ascribed to the high aspect ratio of the nanowires.  相似文献   

16.
Juan Lu  Lude Lu  Xin Wang 《Materials Letters》2007,61(16):3425-3428
Large-scale bismuth sulfide (Bi2S3) nanorods with uniform size have been prepared by hydrothermal method using bismuth chloride (BiCl3) and sodium sulfide (Na2S·9H2O) as raw materials at 180 °C and pH = 1-2 for 12 h. The powder X-ray diffraction (XRD) pattern shows the Bi2S3 crystal belongs to the orthorhombic phase with calculated lattice constants a = 1.1187 nm, b = 1.1075 nm and c = 0.3976 nm. Furthermore, the quantification of X-ray photoelectron spectra (XPS) analysis peaks gives an atomic ratio of 1.9:3.0 for Bi:S. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopic (TEM) studies reveal that the appearance of the as-prepared Bi2S3 is rod-like with typical lengths in the range of 2-5 μm and diameters in the range of 10-30 nm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.  相似文献   

17.
We successfully synthesized hierarchical SnO2 flower-like architectures assembled with nanorods via a facile hydrothermal route under mild condition. The structures and morphologies of the obtained hierarchical architectures were characterized by means of powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. By varying hydrothermal reaction time, we obtained the sphere-like and flower-like SnO2. The evolution that the morphology changing from sphere-like to flower-like was systematically investigated. Moreover, the mechanism of formation for this structure was proposed in detail.  相似文献   

18.
Nanostructures of tungsten trioxide (WO3) have been successfully synthesized by using an aged route at low temperature (60 °C) followed by a hydrothermal method at 200 °C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (SBET) were measured by using the BET method. The lengths of the WO3 nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.  相似文献   

19.
A general surfactant-assisted wet chemical route has been developed for the synthesis of a variety of bismuth telluride (Bi2Te3) single-crystalline nanostructures with varied morphologies at different temperatures in which hydrazine hydrate plays as an important solvent. Bi2Te3 sheet grown nanoparticles, nanosheets and nanotubes have been synthesized by a simplest wet chemical route at 50, 70 and 100 °C within 4 h. Bi2Te3 sheet grown nanoparticles are obtained in agglomerate state and they are found with many wrinkles. Various types of Bi2Te3 nanotubes are also found which are tapered with one end open and the other closed. X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) spectroscopy were employed to characterize the powder product. It is found that all nanoparticles, nanosheets and nanotubes are well-crystallized nanocrystals and morphologies of the powder products are greatly affected by different synthesis temperatures. The formation mechanisms of bismuth telluride nanostructures are also discussed.  相似文献   

20.
《Materials Letters》2007,61(14-15):2883-2886
Bismuth sulfide (Bi2S3) microcrystallines with three-dimensional (3D) flower-like superstructures were prepared by the microwave irradiation method with bismuth nitrate (Bi(NO3)3·5H2O) and thiourea ((NH2)2CS) as raw materials and ethylene glycol as solvent. The powder X-ray diffraction (XRD) pattern shows the product belongs to the orthorhombic Bi2S3 phase. The quantification of X-ray photoelectron spectra (XPS) analysis peaks gives an atomic ratio of 1.9:3.0 for Bi:S. Transmission electron microscopic (TEM) and scanning electron microscopy (SEM) studies reveal that the superstructure of the as-prepared Bi2S3 consists of sticks extending radially from a nucleation site. The reaction progress and a possible mechanism were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号