首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

2.
Dense BiFeO3 ceramics were prepared by a novel spark plasma sintering (SPS) technique. The sintering was conducted at temperatures ranging from 675 to 750 °C under 70 MPa pressure. A bulk density value up to 96% of theoretical density was achieved in the process. This contrast to around 90% of the theoretical density achieved by conventional sintering at around 830 °C. It was found that the tendency to form unwanted Bi2Fe4O9 phase is higher at a high sintering temperature for SPS. The dielectric and ferroelectric properties also improved (with respect to conventionally sintered sample) for spark plasma-sintered samples.  相似文献   

3.
In this work, yttrium-rare earth oxide solid solution, CRE2O3, produced at FAENQUIL-DEMAR at a cost of only 20% of pure commercial Y2O3, was used as sintering additive of hot-pressed Si3N4 ceramics. The objective of this work was to characterize and to investigate the creep behavior of these ceramics. The samples were sintered by hot-pressing at 1750 °C, for 30 min using a pressure of 20 MPa. Compressive creep tests were carried out in air, between 1250 and 1300 °C, for 60 h, under stresses of 200-300 MPa. The stress exponent under all conditions was determined to be about unity. The apparent activation energy obtained was around 460 kJ mol−1, corresponding to the heat of solution of the Si3N4 in the glassy phase. Both the stress exponent n and apparent activation energy Q are within the range of values reported in other studies of the compressive creep of Y2O3-Al2O3-doped-Si3N4 ceramics. X-ray diffraction (XRD) characterization shows a global reorientation of the β-Si3N4 grains and SEM observations detected no grain growth after the creep tests. These results indicate that grain-boundary sliding controlled by viscous flow is the dominant creep mechanism observed in the present study. The creep resistance presented of this samples indicates that this additive CRE2O3 can be a cheap alternative in the fabrication of Si3N4 ceramics, resulting in promising mechanical properties.  相似文献   

4.
The (AlN, TiN)-Al2O3 composites were fabricated by reaction sintering powder mixtures containing 10-30 wt.% (Al, Ti)-Al2O3 at 1420-1520°C in nitrogen. It was found that the densification and mechanical properties of the sintered composites depended strongly on the Al, Ti contents of the starting powder and hot pressing parameters. Reaction sintering 20 wt.% (Al, Ti)-Al2O3 powder in nitrogen in 1520°C for 30 min yields (AlN, TiN)-Al2O3 composites with the best mechanical properties, with a hardness HRA of 94.1, bending strength of 687 MPa, and fracture toughness of 6.5 MPa m1/2. Microstructure analysis indicated that TiN is present as well dispersed particulates within a matrix of Al2O3. The AlN identified by XRD was not directly observed, but probably resides at the Al2O3 grain boundary. The fracture mode of these composites was observed to be transgranular.  相似文献   

5.
Synthesis of BaTi4O9 ceramics by a reaction-sintering process was investigated. The mixture of raw materials for stoichiometric BaTi4O9 were pressed and sintered into ceramics without any calcination stage involved. Pure BaTi4O9 phases were obtained at 1150-1280 °C. High-sintered density, 98.2-99.5% of theoretical value (4.533 g/cm3), can be obtained for pellets sintered at 1200-1280 °C for 2-6 h. Some rod-shaped grains 3-7 μm in the longitudinal axis appear in pellets sintered at 1230 °C. Both the size and the amount of these rod-shaped grains increase at higher sintering temperature.  相似文献   

6.
Self-propagation high-temperature synthesis (SHS) was applied for the synthesis of low-cost Si3N4 powder. The powder was purified and ground until its particle size reached submicron levels and its purity reached 98%. Using this pretreated powder, with α/β = 60/40 content, fully dense Si3N4 ceramics, having improved mechanical properties, were obtained by liquid-phase sintering in the presence of (Y, La)2O3-AlN. The mechanical properties achieved finally were as follows: strength, 784 MPa; hardness, 15.1 GPa; and fracture toughness, 5.2 MPa m0.5. The behaviors of the SHS-Si3N4 powders before and after the pretreatment were compared. The relation between microstructure and mechanical properties of the sintered specimens and the effect of different β content in the powder on the sintering process of Si3N4 were also studied.  相似文献   

7.
Rare earth and alkaline earth co-doped Ce0.85La0.10Ca0.05O2−δ electrolyte material with the powder obtained by solid-state reaction method was sintered at 1300, 1400, 1500 and 1600 °C respectively. The results showed that the ionic conductivity of the sample sintered at 1400 °C was slightly lower compared to that sintered at 1500 °C in the temperature range of 300-550 °C, while the sample sintered at 1400 °C showed the highest ionic conductivity in all the samples above 550 °C. The ionic conductivity of ∼0.021 S/cm at 600 °C and the relative density of 98.2% were observed for the sample sintered at 1400 °C. In addition, the highest flexural strength with 145 MPa was also obtained for the sample sintered at 1400 °C. It suggested that the sintering temperature for Ce0.85La0.10Ca0.05O2−δ electrolyte may be reduced to as low as 1400 °C with desired properties.  相似文献   

8.
We demonstrate the correlation between sintering behavior and microstructural observations in low-temperature sintered, LaNbO4 microwave ceramics. Small CuO additions to LaNbO4 significantly lowered the sintering temperature from 1250 to 950 °C. To elucidate the sintering mechanism, the internal microstructure of the sample manipulated by a focused ion beam (FIB) was investigated using transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). LaNbO4 with 3 wt% CuO sintered at 950 °C for 2 h possessed the following excellent microwave dielectric properties: a quality factor (Qxf) of 49,000 GHz, relative dielectric constant (?r) of 19.5, and temperature coefficient of resonant frequency (τf) of 1 ppm/°C. The ferroelastic phase transformation was also investigated using in situ X-ray diffraction (XRD) to explain the variation of τf in low-temperature sintered LaNbO4 as a function of CuO content.  相似文献   

9.
Cordierite-based ceramics were developed by sintering a glass selected from MgO-Al2O3-SiO2 system with an aim to use the material as high frequency chip inductors. A small amount of B2O3 and P2O5 were added to optimize the preparation conditions. The glass powder and sintered bodies were characterized by different analytical techniques such as TG-DTA analysis, X-ray diffraction, transmission and scanning electron microscopy. Pellets uniaxially pressed from the glass power could be sintered well at 950 °C having a density of above 99% theoretically, dielectric constant of 5.5, dielectric loss of 0.001 and thermal expansion coefficient of 26.7×10−7 °C−1 (20-400 °C). Crystalline phases in this sintered sample are predominantly α-cordierite (hexagonal high cordierite) and trace amount of μ-cordierite. SEM depicted a uniformly dense microstructure with crystals of granular habit in the sintered sample.  相似文献   

10.
Fine MoSi2 powders containing a small amount of Mo5Si3 have been prepared by self-propagating high-temperature synthesis (SHS), followed by spark plasma sintering (SPS) for 10 min at 1200-1500°C and 30 MPa. Dense MoSi2 materials, in which the grain size is ∼7.5 μm, have been fabricated at 1300°C. They exhibit excellent mechanical properties: Vicker’s hardness Hv (10.6 GPa), fracture toughness KIC (4.5 MPa m1/2), and bending strength σb (560 MPa). The strength of 325 MPa can be retained up to 1000°C.  相似文献   

11.
Using solid-state reaction method, Zr2WP2O12 powder was synthesized for this study. The optimum heating condition was 1200 °C for 4 h. The obtained powder was compacted and sintered. The relative density of the Zr2WP2O12 ceramics with no sintering additive was 60%. That of samples sintered with more than 0.5 mass% MgO was about 97%. The average grain size (D50), as estimated from the polished surface of a sample sintered at 1200 °C for 4 h was about 1 μm. The obtained ceramics showed a negative thermal expansion coefficient of about −3.4 × 10−6 °C−1. Young's modulus, Poisson's ratio, three-point bending strength, Vickers microhardness, and fracture toughness of the obtained ceramics were, respectively, 74 GPa, 0.25, 113 ± 13 MPa, 4.4 GPa and 2.3 MPa m1/2.  相似文献   

12.
TiO2 ceramics doped with 0.75 mol% Ca and 2.5 mol% Ta were sintered at different temperatures ranging from 1300 to 1450°C. The effects of sintering temperature on the microstructure, nonlinear electrical behavior, and dielectric properties of the ceramics were studied. The sample sintered at 1300°C exhibits the highest nonlinear coefficient (5.5) and a comparatively lower relative dielectric constant.  相似文献   

13.
The effect of spark plasma sintering (SPS) on the densification of TiO2 ceramics was investigated using a nanocrystalline TiO2 powder. A fully-dense TiO2 specimen with an average grain size of ∼200 nm was obtained by SPS at 700 °C for 1 h. In contrast, a theoretical density specimen could only be obtained using conventional sintering above 900 °C for 1 h with an average grain size of 1-2 μm.  相似文献   

14.
LiFePO4 powders could be successfully prepared from a precursor solution, which was composed of Li(HCOO)·H2O, FeCl2·4H2O and H3PO4 stoichiometrically dissolved in distilled water, by ultrasonic spray pyrolysis at 500 °C followed by heat treatment at sintering temperatures ranging from 500 to 800 °C in N2 + 3% H2 gas atmosphere. Raman spectroscopy revealed that α-Fe2O3 thin layers were formed on the surface of as-prepared LiFePO4 powders during spray pyrolysis, and they disappeared after sintering above 600 °C. The LiFePO4 powders prepared at 500 °C and then sintered at 600 °C exhibited a first discharge capacity of 100 mAh g−1 at a 0.1 C charge-discharge rate. To improve the electrochemical properties of the LiFePO4 powders, LiFePO4/C composite powders with various amounts of citric acid added were prepared by the present method. The LiFePO4/C (1.87 wt.%) composite powders prepared at 500 °C and then sintered at 800 °C exhibited first-discharge capacities of 140 mAh g−1 at 0.1 C and 84 mAh g−1 at 5 C with excellent cycle performance. In this study, the optimum amount of carbon for the LiFePO4/C composite powders was 1.87 wt.%. From the cyclic voltammetry (CV) and AC impedance spectroscopy measurements, the effects of carbon addition on the electrochemical properties of LiFePO4 powders were also discussed.  相似文献   

15.
The (0 0 l) textured BaBi2(Nb1 − xVx)2O9 (where x = 0, 0.03, 0.07, 0.1 and 0.13) ceramics were fabricated via the conventional melt-quenching technique followed by high temperature heat-treatment (800-1000 °C range). The influence of vanadium content and sintering temperature on the texture development and relative density were investigated. The samples corresponding to the composition x = 0.1 sintered at 1000 °C for 10 h exhibited the maximum orientation of about 67%. The Scanning electron microscopic studies revealed the presence of platy grains having the a-b planes perpendicular the pressing axis. The dielectric constant and the pyroelectric co-efficient values in the direction perpendicular to the pressing axis were higher. The anisotropy in the dielectric constant is about 100 (at 100 kHz) at the dielectric maximum temperature and anisotropy in the pyroelectric co-efficient is about 50 μC cm−2 °C−1 in the vicinity of pyroelectric anomaly for the sample corresponding to the composition x = 0.1 sintered at 1000 °C. Higher values of the dielectric loss and electrical conductivity were observed in the direction perpendicular to the pressing axis which is attributed to the high oxygen ion conduction in the a-b planes.  相似文献   

16.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

17.
Single phase complex spinel (Mn, Ni, Co, Fe)3O4 samples were sintered at 1050, 1200 and 1300 °C for 30 min and at 1200 °C for 120 min. Morphological changes of the obtained samples with the sintering temperature and time were analyzed by X-ray diffraction and scanning electron microscope (SEM). Room temperature far infrared reflectivity spectra for all samples were measured in the frequency range between 50 and 1200 cm−1. The obtained spectra for all samples showed the presence of the same oscillators, but their intensities increased with the sintering temperature and time in correlation with the increase in sample density and microstructure changes during sintering. The measured spectra were numerically analyzed using the Kramers-Krönig method and the four-parameter model of coupled oscillators. Optical modes were calculated for six observed ionic oscillators belonging to the spinel structure of (Mn, Ni, Co, Fe)3O4 of which four were strong and two were weak.  相似文献   

18.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

19.
The microstructure, hardness, fracture toughness and thermal shock resistance were investigated for 15 vol.% TiC0.3N0.7 whisker reinforced β-sialon (Si6−zAlzO2N8−z with z=0.6) composites with additions of three different volume fractions 2, 5 and 20 vol.%, of an yttrium-containing glass oxynitride phase. The composites were prepared by hot pressing at 1750°C for 90 min under a uniaxial pressure of 30 MPa in nitrogen atmosphere. The TiC0.3N0.7 whiskers were found to survive without deteriorating in morphology or reacting with the β-sialon matrix and/or the glass phase. The TiC0.3N0.7 whiskers had no obvious influence on the matrix microstructure, but their presence improved both the hardness and the fracture toughness of the composites. The highest hardness was obtained for the whisker composite with 2 vol.% glass phase (Hv=18.6 GPa). The fracture toughness and thermal shock resistance improved with increasing glass content. The whisker reinforced composite containing 20 vol.% glass showed the highest fracture toughness (K1C=6.8 MPa m1/2). No unstable crack extension occurred during the thermal shock test of the obtained composites in the temperature interval 90-700°C, but above 700°C severe oxidation of the whiskers precludes further evaluation of thermal shock properties by the indentation-quench method applied.  相似文献   

20.
Phase transformation, microstructure development and mechanical properties of 2.45 GHz microwave-sintered silicon nitride (Si3N4) with lithium yttrium oxide (LiYO2) and zirconia (ZrO2) sintering additives were investigated. It was found that α to β phase transformation completed at a lower temperature of 1500 °C. Scanning electron microscopy (SEM) micrographs revealed a bimodal microstructure with a large number of elongated β-Si3N4 grains in addition to smaller grains. Surface residual porosity was observed in all sintered samples due to selective localized over heating of grain-boundary glassy phase. The high aspect-ratio of β-Si3N4 grains exhibited significant crack deflection, debonding and pull-out. It was observed that Vickers hardness and indentation fracture toughness increased with increasing sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号