首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LaFeTeO6 was prepared by solid state reaction of La2O3, Fe2O3 and TeO2 in 1:1:2 molar ratios and characterized by powder X-ray diffraction, thermogravimetry and magnetometry. The detailed crystal structure analysis was carried out by Rietveld refinement. LaFeTeO6 crystallizes in a trigonal lattice with unit cell parameters: a = 5.2049(1) Å and c = 10.3457(2) Å, V = 242.73(2) Å3. The crystal structure is built from sheets of the edge shared FeO6 and TeO6 octahedra stacked along the c-axis. These sheets are connected together by La3+ ions. Thermogravimetric analysis of the compound showed it to be thermally stable up to 1323 K and continuous loss of TeO2 was observed above 1323 K leading to the formation of LaFeO3. High temperature XRD studies revealed a normal expansion behavior of the compound. Temperature and field dependent magnetization of LaFeTeO6 showed paramagnetic behavior in the temperature range of 3-300 K. The effective magnetic moment per Fe3+ ion (5.14 μB) indicates the high spin d5 state of Fe3+ ion.  相似文献   

2.
The structural and magnetic properties of the perovskite Sr2MnSbO6 have been studied. Combining neutron and X-ray powder diffraction data, the temperature evolution of the structural parameters was investigated with the Rietveld method between 2 and 1000 K. The crystal structure is tetragonal (space group I4/m) within the temperature interval of 2-750 K and cubic (space group Fm-3m) above 750 K. Both octahedral B-site positions were found to be partially occupied by Mn and Sb, but with different Mn/Sb ratios. The magnetic susceptibilities showed irreversibility between field cooled and zero-field cooled (ZFC) conditions and spin glass like magnetic dynamics including aging and memory phenomena at temperatures below 30 K; all appearing well above a broad maximum at 13 K in the ZFC susceptibility curves. This suggests that the material reaches an unconventional spin-glass state at low temperatures, possibly arising from a competitive situation between the double exchange (ferromagnetism) and the super-exchange (antiferromagnetism). Neutron diffraction patterns showed no evidence of a long-range magnetic ordering at 2 K which is consistent with spin glass behavior. The factors governing the observed structural and magnetic properties of Sr2MnSbO6 are discussed and compared with those of other quaternary Mn- and Sb-containing perovskites. Graphs of the temperature of magnetic phase transitions as functions of the cation size were constructed and are discussed for the AB3+1/2B5+1/2O3 series with isomorphous substitution of B3+ and B5+ cations. Possible influence of the A-cation sublattice on magnetic properties is also shortly considered.  相似文献   

3.
4.
Supercritical fluids are shown to be an excellent reaction media for the synthesis of novel solid state phases at intermediate temperatures. LiVGe2O6 and NaVGe2O6 have the common pyroxene structure composed of VO6 linear chains. NaVGe2O6 crystallizes in the monoclinic space group C2/c with four formula units having cell dimensions a = 9.960(4) Å, b = 8.853(10) Å, c = 5.4861(10) Å, β = 106.403(3)°. The structure was refined until R = 0.0290 and Rw = 0.0370. For LiVGe2O6 in space group P21/c: a = 9.8508(7) Å, b = 8.754(3) Å, c = 5.3948(13) Å, β = 108(3)°, R = 0.0240 and Rw = 0.0250. The compounds contain edge-shared VO6 octahedral chains and corner-shared GeO4 tetrahedral chains. The presence of these VO6 chains results in spin-Peierls distortion. Structural and physical characterization of the compounds are reported.  相似文献   

5.
The new oxyarsenate Li0.5Ni0.25TiOAsO4 has been synthesized and studied by a combination of X-ray powder diffraction, neutrons powder diffraction and vibrational spectroscopy. Li0.5Ni0.25TiOAsO4 crystallizes in the monoclinic P21/c space group with the unit cell parameters: a = 6.5854(3) Å, b = 7.4665(4) Å, c = 7.4969(4) Å, β = 89.884(6)°, V = 368.62(1) Å3 and Z = 4. The structure has been determined at room temperature from neutrons diffraction by the Rietveld method analysis. It is formed by a 3D network of TiO6 octahedra and AsO4 tetrahedra sharing corners. Structural refinement shows a partial and a statistical occupancy of 2a and 2b sites by Li+ and Ni2+ ions. TiO6 octahedra are linked together by corners and form infinite chains along c-axis. Raman and infrared studies confirm the existence of -TiOTi- chains. Diffuse reflectance spectrum indicates the presence of octahedrally coordinated Ni2+ ions.  相似文献   

6.
We have grown high-quality single crystals of the triple-layered perovskite ruthenate Sr4Ru3O10 using a floating-zone (FZ) method and measured their electronic transport and magnetic properties. Our experiments results are consistent with those previously reported for Sr4Ru3O10 flux crystals; the magnetic ground state of Sr4Ru3O10 is poised between an itinerant metamagnetic and itinerant ferromagnetic state, and its electronic ground state is a Fermi liquid. In addition, we have investigated the effect of disorder on the metallic state of Sr4Ru3O10. From resistivity measurements of various Sr4Ru3O10 crystals with different levels of disorder, we found that disorder enhances both temperature-independent elastic scattering and also temperature-dependent inelastic scattering. The in-plane metamagnetic transition is also found to be sensitive to disorder. Disorder results in an increase in the metamagnetic transition field and different magnetic behavior above the transition. We discuss the implications of this interesting observation.  相似文献   

7.
We have investigated the double perovskites Ca2MSbO6 (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M0.5Sb0.5)O3. Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO6 octahedra of Ca(Mn0.5Sb0.5)O3, in contrast with the ordered double perovskite Sr2MnSbO6. Ca(Fe0.5Sb0.5)O3 behaves as an antiferromagnet with an ordered magnetic moment for Fe3+ of 1.53(4)μB and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn0.5Sb0.5)O3 cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.  相似文献   

8.
The structural and magnetic properties of the complex metal oxides Pb(Mn1/2Nb1/2)O3 (PMNO) and Pb(Mn1/4Fe1/4Nb1/2)O3 (PMFNO), which belong to a class of disordered perovskites have been studied. The magnetic susceptibilities of PMNO showed hysteresis between field cooled and zero-field cooled conditions below the transition of 15 K, suggesting that the material has a spin-glass feature. Neutron diffraction patterns of PMNO showed no evidence of a long-range magnetic ordering at 1.5 K, which is consistent with spin-glass behavior. Rietveld refinements of neutron powder diffraction data collected at different temperatures between 1.5 and 700 K have been carried out in order to extract structural information. The crystal structure of this compound is cubic (space group Pmm) within the whole temperature interval. The Mn and Nb ions were found to be disordered over the perovskite B-sites. The main feature of this structure is the positional disorder at the Pb site, the importance of which in connection with the ferroic transitions is briefly discussed. The Pb cations show a positional disorder shifting from their high-symmetry positions along the [1 1 1] direction. The effect of Fe-doping on PMNO has been studied. The substitution of Fe at the Mn site in PMFNO results in a small changes of the magnetic properties without significant differences in the crystal structures. The factors governing the observed structural and magnetic properties of PMNO and PMFNO are discussed and compared with those of other quaternary Mn-containing perovskites. For the PbB3+1/2Nb1/2O3 series with the isomorphous substitution B3+, graphs of average lattice parameters of the perovskite phase and the temperatures of ferroelectric and magnetic phase transitions as functions of the B3+ cation radius were constructed and are discussed. Influence of A-cation sublattice on magnetic properties is also considered.  相似文献   

9.
(C2H10N2)[Mn2.09Co0.91(HPO3)4] has been synthesized using mild hydrothermal conditions under autogeneous pressure. The compound crystallizes in the triclinic P-1 space group. The unit-cell parameters are a = 5.4061(8), b = 5.4150(7), c = 14.136(2) Å, α = 80.84(1), β = 85.41(1), γ = 60.00(1) and Z = 1. The compound shows a layered structure constructed from M3O12 trimer units linked thorough the (HPO3)2− phosphite oxoanions with the ethylenediammonium cations located between the sheets compensating the anionic charge of the inorganic framework. The IR and Raman spectra confirm the presence of the ethylenediammonium cation and phosphite anion. The diffuse reflectance spectrum is in accordance with the presence of Co(II) and Mn(II) high spin cations in slightly distorted octahedral symmetry. The calculated Dq and Racah parameters for the Co(II) cations are Dq = 710, B = 870 and C = 4100 cm−1. The magnetic measurements indicate the existence of antiferromagnetic interactions as the major interactions. Hysteresis observed at low temperature indicates a weak ferromagnetic component, due to a non-cancellation of spins, with coercitive field of 900 G and magnetization of 700 emu/mol.  相似文献   

10.
The structure of a newly synthesized AgTlTeO3 crystalline compound has been solved from single crystal X-ray diffraction data and refined to a final reliability factor R1 = 0.037. It was found having an orthorhombic Iba2 space group symmetry with unit cell parameters a = 14.708(7) Å, b = 10.745(6) Å, c = 5.166(3) Å, Z = 8. Its lattice is divided into separated AgTlTeO3 sheets parallel to [0 1 0] which are formed by TeO3 pyramids, TlO4 disphenoids and AgO6 octahedra sharing either corners or edges. At the same time, from the crystal chemistry point of view, it can be classified as a typical island-type compound made up from molecular-like [TeO3]2− ortho-anions weakly connected with Ag+ and Tl+ cations. The vibrational spectra and their interpretations complemented by the calculated elastic properties confirm this classification. The model-estimated piezoelectric constants allow characterizing AgTlTeO3 as a strong pyroelectric structure.  相似文献   

11.
The new complex vanadium oxide K2SrV3O9 has been synthesized and investigated by means of X-ray powder diffraction (XPD), electron microscopy and magnetic susceptibility measurements. The oxide has an orthorhombic unit cell with lattice parameters a = 10.1922(2) Å, b = 5.4171(1) Å, c = 16.1425(3) Å, space group Pnma and Z = 4. The crystal structure of K2SrV3O9 has been refined by Rietveld method using X-ray powder diffraction data. The structure contains infinite chains built by V4+O5 square pyramids linked to each other via VO4 tetrahedra. The chains form layers and potassium and strontium cations orderly occupy structural interstices between these layers. Electron diffraction as well as high resolution electron microscopy confirmed the structure solution. Magnetic susceptibility measurements revealed an antiferromagnetic interaction with J of the order of 100 K inside the chains and no long-range magnetic order above 2 K. The origin of the magnetic exchange is likely a result of super-exchange interaction through the two VO4 tetrahedra linking the polyhedra with the magnetic V4+ cations.  相似文献   

12.
The CoxNi1−x(SeO3)·2H2O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co0.4Ni0.6(SeO3)·2H2O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO3)·2H2O (M = Co and Ni) minerals and crystallizes in the P21/n space group, with a = 6.4681(7), b = 8.7816(7), c = 7.5668(7) Å, β = 98.927(9)° and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO3)2− selenite oxoanions and edge-sharing M2O10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d7 and 3d8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO3)2− anions which are linked to the M2O10 polyhedra in three dimensions.  相似文献   

13.
The complex metal oxide Mn3TeO6 exhibits a corundum related structure and has been prepared both in forms of single crystals by chemical transport reactions and of polycrystalline powders by a solid state reaction route. The crystal structure and magnetic properties have been investigated using a combination of X-ray and neutron powder diffraction, electron microscopy, calorimetric and magnetic measurements. At room temperature this compound adopts a trigonal structure, space group with a = 8.8679(1) Å, c = 10.6727(2) Å. A long-range magnetically ordered state is identified below 23 K. An unexpected feature of this magnetic structure is several types of Mn-chains. Under the action of the incommensurate magnetic propagation vector k = [0, 0, 0.4302(1)] the unique Mn site is split into two magnetically different orbits. One orbit forms a perfect helix with the spiral axis along the c-axis while the other orbit has a sine wave character along the c-axis.  相似文献   

14.
The [(C2N2H9)VF(PO4)] compound has been synthesized by hydrothermal techniques under autogeneous pressure at 170°C. The compound was characterized from X-ray powder diffraction data with the Rietveld method. Its crystal structure consists of sheets linked by the ethylenediammonium cations and constructed by chains of VO3F2N octahedra. The thermal study indicates that the compound is stable up to 290°C. In the IR spectrum the bands of both the ethylenediammonium and phosphate ions are observed. From the reflectance diffuse spectrum the Dq and Racah parameters have been calculated. The magnetic measurements indicate the presence of antiferromagnetic interactions.  相似文献   

15.
A new iron phosphonate-oxalate [Fe(O3PCH3)(C2O4)0.5(H2O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO6 octahedra and O3PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P21/n (no. 14), a = 4.851(2) Å, b = 16.803(7) Å, c = 7.941(4) Å, β = 107.516(6)°, V = 617.2(5) Å3, Z = 4, R1 = 0.0337 and wR2=0.0874 for 1251 reflections [I > 2σ(I)]. Mössbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with TN = 30 K due to a weak spin canting.  相似文献   

16.
The crystal structures of two PbSb2O6-type compounds containing titanium, CdTi2O4(OH)2 and LaTiSbO6 were refined by X-ray powder diffraction data. For both compounds structure refinements with the space group were successful and the R-factors were RWP = 6.46% and RP = 4.90% for CdTi2O4(OH)2 and RWP = 9.55% and RP = 7.17% for LaTiSbO6. These crystal structures were the same as that of the typical PbSb2O6-type compound in spite of the existence of protons in the interlayer or two different metal ions in the layer.  相似文献   

17.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

18.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

19.
Nanosized Bi2WO6, PbWO4 and ZnWO4 photocatalysts were synthesized by a mild hydrothermal crystallization process. The physical and photophysical properties of the catalysts were characterized by X-ray diffractometry, Brunauer-Emmet-Teller surface area and porosity measurements, transmission electron microscopy, Raman spectra, and diffused reflectance spectroscopy. The rhodamine-B photodegradation in aqueous medium was employed as a probe reaction to test the photoactivities of the as-prepared samples under four irradiation wavelengths. Bi2WO6 not only presented the photocatalytic activity in the wide spectral scope, including UV and visible light but also exhibited the strong photosensitized capability to transform RhB under visible light irradiation (λ > 490 nm). ZnWO4 only displayed relatively high photoactivity under UV irradiation. However, PbWO4 showed poor photoactivity under any light irradiation. On the basis of the calculated density functional theory (DFT), the photocatalytic mechanisms were discussed.  相似文献   

20.
The structure of the cation-ordered double perovskite Ba2HoTaO6 was examined using synchrotron X-ray powder diffraction at fine temperature intervals over the range of 90-300 K. Ba2HoTaO6 has a cubic structure in space group at room temperature. A proper ferroelastic phase transition to I4/m tetragonal symmetry occurs near approximately 260 K. Analysis of the spontaneous tetragonal strain versus temperature indicated that the phase transition is second order in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号