共查询到20条相似文献,搜索用时 15 毫秒
1.
Yaoshun Jia 《Materials Research Bulletin》2005,40(9):1623-1629
Co/Cu bimetallic nanocrystallites, with average diameter of 50 nm, were prepared by a sonochemical method in the hydrazine solution of copper chloride and cobalt chloride. Cobalt was face-centered cubic phase when synthesized and remained fcc phase throughout the annealing process. X-ray diffractometer (XRD), transmission electron microscope (TEM), differential scanning calorimetry (DSC), vibrating sample magnetometry (VSM), inductively coupled plasma-atomic emission spectrometer (ICP-AES) measurements were carried out to investigate their structural and magnetic properties. It was found that the magnetic properties of bimetallic nanocrystallites were close to that of the sputtered alloys. 相似文献
2.
Zinc oxide (ZnO) spherical nanoparticles (SNPs) and bitter-melon-like (BML) microparticles were synthesized by a hydrothermal route using a zinc (Zn) plate as a source and substrate at various synthesis conditions. The structural analysis confirmed the formation of ZnO with hexagonal wurtzite phase on the hexagonal Zn substrate with growth of the ZnO microparticles along the [1 0 1] direction. The UV-vis absorption spectra of the ZnO microparticles indicated absorption peaks in the UV region which can be attributed to the band gap of ZnO. The room temperature photoluminescence (PL) of the ZnO microparticles exhibited a broad emission band, which is fitted with four Gaussian peaks and were assigned to transitions involving free excitons and various defect centers. The growth model for the formation of ZnO micro- and nanoparticles is presented. 相似文献
3.
Core-shell Ni-Fe@ferrite nanoparticles with an average diameter of 14 nm and shell thickness of 3 nm were synthesized through a redox-transmetalation process. The alloy core and spinel oxide shell were verified by X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy. The hydrophobic oleylamine molecules on the surface were replaced by hydrophilic meso-2,3-Dimercaptosuccinic acid to make the nanoparticles to be water-soluble. X-ray diffraction study of the as-prepared core-shell nanoparticles indicates that they remained face centered cubic alloy core and spinel shell form in air. Magnetic measurements indicate that the core-shell nanoparticles exhibit superparamagnetic and exchange bias characteristics at 300 K and 5 K, respectively. 相似文献
4.
Ceria nanoparticles were obtained by the calcination of precursors synthesised via the solvothermal reaction of cerium acetate. The CeO2 samples obtained by the thermal decomposition of Ce(C7H15COO)3·xH2O synthesised by solvothermal reaction in 1,4-butanediol in the presence of octanoic acid had an extremely large surface area of 180 m2/g. The Ru catalyst supported on this CeO2 sample showed a high catalytic activity for benzyl alcohol oxidation. 相似文献
5.
A novel method is reported here for the synthesis of optically clear and stable colloidal solutions of silver nanoparticles. According to size they show different colours depending upon their plasmonic absorption frequencies. The materials have been synthesized at room temperature by chemical reduction of silver ions (silver nitrate) coordinated with dendrigraft polymer, polyethyleneimine (PEI) using formaldehyde in aqueous medium. UV-vis absorption and transmission electron microscopy (TEM) studies show single-band absorption with peak maximum at 354 nm for ∼3 nm sized particles, whereas a side band at ∼400 nm was observed when the particle size increased to ∼20 nm. Highly narrow particle size distribution was observed in case of samples having ∼3 nm size silver particles and also the process of reduction could be completed within minutes. More interestingly, the 3-nm sized particles showed strong blue (474 nm) fluorescence under UV excitation. Thin films of all synthesized samples were prepared on silica substrate by fine spray coating technique. 相似文献
6.
Trilochan Sahoo Jong Hyeob Baek Jin Soo Kim Cheul-Ro Lee 《Materials Research Bulletin》2011,46(4):525-530
The presence of the complexing agents in the growth solution poses risk of the unintentional doping in the synthesized product and hence is likely to adversely affect the intrinsic properties. Herein we report the synthesis of ZnO nanoparticles with porous microstructure using pure aqueous precursor. Crystalline ZnO nanoparticles were synthesized by thermal treatment of aqueous solution of zinc acetate in an open bath. The size of the nanocrystals was controlled by changing the initial precursor concentration. The structural and optical properties of the synthesized nanocrystals were analyzed by X-ray diffraction, high resolution transmission electron microscopy, UV-vis absorption and room temperature photoluminescence measurement techniques. The TEM and UV-vis spectral signature analyses confirmed the formation of dispersed single crystalline ZnO nanoparticles. The nanopowders were found to have disordered mesoporous structure. The synthesized nanocrystals exhibited characteristic band edge emission as well as to surface defect related deep level visible luminescence. 相似文献
7.
Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation 总被引:1,自引:0,他引:1
Xiangling Ren 《Materials Research Bulletin》2007,42(5):807-813
We report the large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles by the esterification between zinc acetate and alcohol. The morphology of the ZnO nanoparticles was investigated by transmission electron microscopy, selected area electron diffraction and scanning electron microscopy measurements. The synthesized ZnO nanoparticles are single-crystalline with hexagonal phase and show a strong UV emission at −378 nm due to the excellent crystallinity of particles. A possible formation mechanism of the hexagonal cone-shape structure is proposed. Furthermore, the as-prepared ZnO particles exhibit high photocatalytic activity for the photocatalytic degradation of Rhodamine B, indicating that the ZnO nanostructure is promising as a semiconductor photocatalyst. 相似文献
8.
The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V2O5 and BaCl2 at 200 °C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba3V2O8 with small amount of Ba3VO4.8 coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of ∼20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO4 tetrahedron with Td symmetry in Ba3V2O8. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 × 10−3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 × 10−3 emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2. 相似文献
9.
Irshad A. Wani Aparna Ganguly Jahangeer Ahmed Tokeer Ahmad 《Materials Research Bulletin》2010,45(8):1033-1038
Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH4 as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m2/g. UV-visible studies show the absorption band at ∼425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%. 相似文献
10.
《Materials Research Bulletin》2013,48(11):4454-4459
Carboxyl-capped YVO4:Eu,Bi nanoparticles with average diameter of ∼10 nm were synthesized via a copolymer of phosphono and carboxylic acid mediated hydrothermal method. Under a 350 nm ultraviolet light excitation, the YVO4:Eu,Bi NPs exhibit sharp and bright red emission peaked at 615 nm and with highest quantum yield of ∼43%. Furthermore, the nanoparticles show good water/buffer stability and feasible bioconjugation benefiting from the carboxylic groups on their surface. Based on these kind optical and surface properties of the YVO4:Eu,Bi nanoparticles, an immunochromatographic test strip assay for quantitative determination of human IgG was achieved. This protocol can be extended to other rare-earth nanoparticles with the purpose of developing bioprobes for desired applications. 相似文献
11.
Functionalizations of silver nanoparticles (AgNPs) by phospholipids (PLs) have been manifested well by means of covalent connection between AgNPs with PLs. After functionalization, the attached PLs can self-assemble into bilayer structures on the surfaces of AgNPs. TEM displays the images of pure AgNPs and functionalized AgNPs with certain thickness of the phospholipid bilayers, as a result of chemical connection existing in AgNPs-PL conjugates. UV-vis and IR spectra confirm the strong Ag-S interaction between silver and sulfur produced during the reactions. This new modification method for AgNPs offers a good opportunity to functionalize nanoparticles with biological activity. 相似文献
12.
We have synthesized BaS:Bi nanocrystalline powder of average grain size 35 nm by solid-state diffusion method using sodium thiosulphate as a flux. During this work we have optimized the nature and amount of flux, amount of the dopant and temperature of firing for maximum yield of photoluminescence. The samples were characterized by X-ray powder diffraction (XRD) method, transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible techniques. On excitation by 425 nm, these nanophosphors give one emission peak at 575 nm which corresponds to green color. In the excitation spectra of these particles there are two peaks at 350 nm and 425 nm. The effect of dopant concentration on the photoluminescence of BaS:Bi nanocrystallites has been studied which is in agreement with the principle of concentration quenching. The energy band gap of bismuth doped BaS nanopowder has been calculated to be 4.25 eV and is blue shifted in comparison to their bulk counterparts. The blue shift may be due to the quantum confinement in the particles. 相似文献
13.
Fe-Ru bimetallic nanoparticles were prepared by a microwave irradiation assisted glycol reduction method using poly-N-vinyl-2-pyrrolidone (PVP) as protective agent. The structure and morphology of the nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and high-resolution transmission electron microscopy (HRTEM). EDXA and XRD analysis confirmed the presence of Fe and Ru. The bimetallic nanoparticles were subsequently loaded onto an MgAl2O4 supporter with K2O as promoters and used as catalyst for water-gas shift reaction. The results indicated that the FeRu bimetallic nanoparticles exhibit high catalytic activity for water-gas shift reaction due to the synergistic effect between iron and ruthenium. Potassium oxide can enhance the CO selectivity of the catalyst significantly besides increasing the catalyst activity. 相似文献
14.
Qingtao Pan Kai Huang Shibing Ni Feng Yang Deyan He 《Materials Research Bulletin》2008,43(6):1440-1447
Well-crystalline flower- and rod-like NiS nanostructures have been synthesized by an organic-free hydrothermal process at a low temperature of 200 °C. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to characterize the as-synthesized NiS nanostructures. The effects of temperature and reaction time on the morphology have been also investigated. The two-step flake-cracking mechanism for the formation of flower- and rod-like NiS nanostructures was discussed. The products were also investigated by photoluminescence (PL) spectroscopy. 相似文献
15.
Large-scale, high-purity and uniform BiVO4 nanoribbons have been synthesized by a facile hydrothermal route without surfactants. The as-prepared BiVO4 nanoribbons were up to hundreds of micrometers in length, 60-80 nm in width, 15-20 nm in thickness, and grew along the [0 1 0] direction. The photoresponse property of BiVO4 nanoribbons was measured under different wavelengths. Their photoswitch behavior was also demonstrated. Furthermore, the nanoribbons showed superior photocatalytic activities in the degradation of eosin Y under visible light irradiation. 相似文献
16.
Bingdi Chen 《Materials Research Bulletin》2009,44(4):889-66
A layer-by-layer assembly technique was developed to synthesize the hybrid nanostructures of Au nanocrystals with diameter of about 5 nm and ZnO nanorods via the electrostatic interaction. In comparison with ZnO nanorods, the Au-ZnO hybrid nanostructures exhibited the broadened and red-shifted surface plasmon band, enhanced band gap emission, and suppressed defect emission due to the strong interfacial coupling between Au and ZnO. Moreover, the band gap emission of the Au-ZnO hybrid nanostructures is controllably blue-shifted with decreasing distance between the Au nanocrystals and ZnO nanorods tuned by the amount of the polyelectrolyte layers due to the exciton and plasmon interactions. 相似文献
17.
CeF3 nanoparticles 5-10 nm in size were prepared using the polyol method. CeCl3 and HF were heated up in ethylene glycol. At a temperature of 180 °C crystalline CeF3 nanoparticles were formed. The material was washed with ethanol, centrifugated and dried. The particles were characterized by EDX, XRD and TEM. 相似文献
18.
Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H2, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 °C for H2, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H2 at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively. 相似文献
19.
Nanocrystalline CeO2 particles doped in the range of 0-20% of Ca2+, La3+, and Zr4+ have been prepared from hydrothermal synthesis of nitrate solutions at 200 °C and the influences of the dopants on microstructure and optical properties of the nanoparticles have been investigated. The unit cell parameter is found to be modified by −0.39, +0.83 and +0.16% for doping of 20% Zr4+, La3+, and Ca2+, respectively. For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. A high-resolution transmission electron microscopy investigation reveals that these particles are single crystals mostly having hexagonal, square or circular two-dimensional projections. UV-visible spectra of doped powders exhibit shift of the absorption edge and absorption peak with respect to those of the undoped CeO2 particles and has been attributed to compensation of Ce3+ and decreasing crystallite size as result of doping. 相似文献
20.
Spindle porous iron nanoparticles were firstly synthesized by reducing the pre-synthesized hematite (α-Fe2O3) spindle particles with hydrogen gas. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and vibrating sample magnetometry (VSM). A lattice shrinkage mechanism was employed to explain the formation process of the porous structure, and the adsorbed phosphate was proposed as a protective shell in the reduction process. N2 adsorption/desorption result showed a Brunauer-Emmett-Teller (BET) surface area of 29.7 m2/g and a continuous pore size distribution from 2 nm to 100 nm. The magnetic hysteresis loop of the synthesized iron particles showed a saturation magnetization of 84.65 emu/g and a coercivity of 442.36 Oe at room temperature. 相似文献