首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
保持粒子活性的改进粒子群优化算法   总被引:6,自引:3,他引:6       下载免费PDF全文
针对基本粒子群优化算法(particle swarm optimization, 简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。  相似文献   

2.
针对平面多臂交叉天线阵列,提出了一种获得低最大副瓣高度(MSLL)、窄半功率波束宽度(HP-BW)和较少阵元数量的阵列稀布优化方法.并提出了一种基于旋转对称特性的交叉阵列优化模型,应用粒子群优化(PSO)算法对阵列进行优化,引入改进的免疫过程提高个体多样性,从而达到更好的全局搜索效果.仿真结果表明:相比于粒子群算法,改...  相似文献   

3.
粒子群优化算法的改进   总被引:1,自引:1,他引:1       下载免费PDF全文
针对粒子群优化算法搜索精度不高、对高维函数优化性能不佳的问题,提出一种改进的粒子群优化算法。以递增方式对粒子进行释放增强可利用的种群信息,通过释放粒子引导极值变化加强算法的运算效率。实验结果表明,与其他算法相比,改进算法具有更强的寻优能力和搜索精度,且适于高维复杂函数的优化。  相似文献   

4.
粒子群优化算法是一种启发式全局优化技术,一种基于群智能的演化计算方法。本文给出了多种改进形式以及与其他算法的比较,并提出了未来可能的研究方向。  相似文献   

5.
改进的粒子群优化算法   总被引:1,自引:0,他引:1  
将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法.新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解.实验结果表明了算法的有效性.  相似文献   

6.
粒子群优化算法在桁架结构优化中的应用   总被引:1,自引:0,他引:1  
介绍了粒子群优化(PSO)算法的一种改进算法:用于约束优化问题的启发式粒子群优化(HPSO)算法.针对HPSO算法在桁架结构优化中速度较慢的问题,将HPSO算法的约束处理策略与另一种适用于粒子群算法的约束处理方法结合,并将改进后的算法应用到1个桁架结构截面优化设计算例中,同时与HPSO算法进行对比分析.对于此算例,改进算法和HPSO算法都运行了多次,从多次运行的统计分析中可以看出,改进算法的优化效果和稳定性好于HPSO算法,且结构分析的次数减少了一半左右,从而整个程序运行的速度比HPSO算法提高了将近一倍.  相似文献   

7.
介绍了粒子群优化(PSO)算法的一种改进算法:用于约束优化问题的启发式粒子群优化(HPSO)算法。针对HP-SO算法在桁架结构优化中速度较慢的问题,将HPSO算法的约束处理策略与另一种适用于粒子群算法的约束处理方法结合,并将改进后的算法应用到1个桁架结构截面优化设计算例中,同时与HPSO算法进行对比分析。对于此算例,改进算法和HPSO算法都运行了多次,从多次运行的统计分析中可以看出,改进算法的优化效果和稳定性好于HPSO算法,且结构分析的次数减少了一半左右,从而整个程序运行的速度比HPSO算法提高了将近一倍。  相似文献   

8.
梁军  程灿 《计算机工程与设计》2008,29(11):2893-2896
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高.  相似文献   

9.
提出了一种基于改进粒子群优化算法的多用户检测器。介绍了最佳多用户检测模型以及粒子群优化算法的基本思想。进行了理论依据和仿真性能分析。仿真结果表明:该检测器在误码率性能和抗“远近”效应上优于传统检测器和基于粒子群优化得多用户检测器,计算复杂度较低。  相似文献   

10.
粒子群优化算法的研究进展   总被引:3,自引:0,他引:3  
粒子群优化算法是一类新兴的基于群智能的随机优化算法,同其它的进化算法相比,其最具吸引人的特征是简单容易实现和更强的全局优化能力。本文介绍了PSO算法的研究现状,并讨论了PSO将来的研究方向。  相似文献   

11.
针对虚拟口腔正畸治疗系统中牙齿移动路径规划问题,提出了一种基于正态分布的简化均值粒子群的牙齿正畸路径规划方法。首先建立了单颗牙齿及整体牙齿的数学模型,并根据牙齿运动的特性,将牙齿正畸路径规划问题转化为带约束的优化问题;其次,在简化粒子群算法的基础上,引入正态分布及均值粒子群的思想,提出了一种基于正态分布的简化均值粒子群优化(NSMPSO)算法;最后,从平移路径长度、旋转角度、碰撞检测以及牙齿在单阶段的移动量、旋转量这五个方面构造了高安全性的适应度函数,实现了牙齿正畸移动路径的规划。将NSMPSO与基本粒子群优化(PSO)算法、均值粒子群优化(MPSO)算法和动态调整惯性权重的简化均值粒子群优化(DSMPSO)算法进行对比,结果表明,改进的算法在Sphere、Griewank和Ackley这三大基准测试函数上均在50次迭代内趋于稳定收敛,且均具有最快的收敛速度和最高的收敛精度。通过Matlab中的仿真实验,验证了利用该数学模型和改进算法求得的最优路径安全可靠,可以为医生提供辅助诊断。  相似文献   

12.
在基于粒子群优化的节点定位过程中,惯性权重的设置对算法收敛速度和定位精度有着重要影响。本文从两个方面对其进行改进:利用节点间的连通信息对未知节点可能存在的区域进行估计,缩小粒子搜索范围;根据未知节点存在区域,对粒子群优化算法的惯性权重设置进行改进。仿真结果表明,改进算法的定位精度和稳定性有明显的提高,是一种可行的无线传感器网络节点定位的解决方案。  相似文献   

13.
基于粒子群优化的模糊C-均值聚类改进算法   总被引:3,自引:3,他引:3  
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果.  相似文献   

14.
针对粒子群算法后期收敛速度慢、易陷入局部极值的缺点,提出一种基于粒密度和最大距离积法的简 化粒子群聚类算法.通过采用线性递减与随机分布相结合的惯性权重策略、添加极值扰动算子、优化粒子个体最优位置,使粒子群算法能够快速收敛于全局最优.再把改进后的粒子群算法与K-means算法相结合,解决K-means算法因随机初始聚类中心而导致聚类效果差、不稳定等问题.通过实验分析,该算法的聚类结果准确率更高、收敛速度更快、稳定性更强.  相似文献   

15.
为了提高相似目标的分类识别率,实现降维,提出了一种基于改进的粒子群优化(IPSO)的特征选择与目标识别方法。IPSO利用二进制位串来计算位置和速度,并在速度更新公式中增加约束项,权衡识别率与特征维数的比重选择适应度函数。结合距离分类器,用IPSO在自建的相似目标特征库上进行最优特征子集选择及分类实验。实验结果表明了该算法的有效性,在UCI数据集上的对比实验结果表明了IPSO的改进效果。  相似文献   

16.
针对模糊c均值聚类算法自适应性不强、易陷入局部极小值及聚类效果不理想等问题,提出一种基于自适应混沌粒子群的聚类算法。对粒子群的加速因子进行动态设置,使粒子搜索机制具有自适应调节的功能;利用混沌扰动优化,使种群的多样性和全局搜索能力得到提高,利用边界缓冲墙对越界粒子进行处理,避免正负粒子飞越边界的干扰。选取 UCI机器学习库中的4种数据样本集进行测试,测试结果表明,该算法具有良好的性能。  相似文献   

17.
针对无线传感器网络节点定位中DV-Hop算法定位精度较低的问题,提出了一种改进DV-Hop算法,该算法引入跳距误差加权策略,改进平均每跳距离计算方法,使其更好地反映网络的平均每跳距离的实际情况,有效地降低了无线传感器网络中无需测距算法的定位误差。同时引入自适应粒子群优化算法来校正改进DV-Hop的估计位置的方法。仿真结果表明,本算法在定位精度和节点覆盖率上明显优于基于PSO校正的DV--Hop算法和传统的DV-Hop算法,证明该算法在一定程度上提高了DV-Hop算法对无线传感器网络的容错性,具有更好的适用性。  相似文献   

18.
针对粒子群算法易跳过全局极值,且只能求解连续性问题的缺点,提出离散复形法局部搜索的思想,来有效提高粒子群算法在离散型问题中的搜索性能。针对粒子群算法易陷入局部极小的缺点,引入自适应粒子迁徙操作保证粒子的多样性,有效避免陷入局部收敛。对采用CVaR度量风险、构建有交易费用和限制证券比例的均值-CVaR投资组合模型进行仿真实验,实验结果验证了算法的有效性。将改进的粒子群算法应用到求解均值-CVaR模型的投资组合问题,与其他算法相比,该方法精度更高、性能更稳定。  相似文献   

19.
复形法粒子群优化算法研究   总被引:1,自引:1,他引:0  
针对基本粒子群优化算法对复杂函数优化时难以获得最优解的缺陷,提出了一种复形粒子群优化算法。该算法采用复形法来提高粒子的局部搜索能力,从而保证了算法能够跳出局部最优,获得全局最优解。实验结果表明,与文献算法相比,该算法在基准函数优化时具有更强的寻优能力和更高的搜索精度。  相似文献   

20.
针对布尔型粒子群优化算法存在容易陷入局部极值和收敛速度慢的缺点,提出一种带扰动因子的自适应调整惯性权重和学习因子取1概率的布尔型粒子群优化算法,并把这种改进的布尔型粒子群优化算法用于网络编码的优化以得到具有最小编码边的编码方案.对两个人工拓扑进行优化得到的结果表明,基于布尔型粒子群优化算法最小化编码边方案的收敛速度和精度都优于基于遗传算法最小化编码边的方案的速度和精度,能有效用于网络编码的优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号