首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the single phase domain of LiGd1−xYbx(WO4)2. The lattices parameters decrease as a function of Yb3+ substitution in Gd3+ sites. Transparent LiGd1−xYbx(WO4)2 fibers single crystals were successfully grown by the micro-pulling down technique (μ-PD). The Yb3+-doped LiGd(WO4)2 fibers single crystals have been pulled under stationary stable growth conditions corresponding to flat crystallization interface with meniscus length equal to 120 μm. The fibers diameters varied from 0.5 to 1 mm depending on the capillary die diameter, pulling rate and the molten zone temperature. Fibers single crystals free of defects are observed for Ytterbium concentration in the melt up to 5 at%. Above this limit, inclusions and cracks appear and the optical quality of the fibers were deteriorated. The emission spectra of Yb3+-doped LiGd(WO4)2 were investigated.  相似文献   

2.
This work focuses on the development of Eu2+-doped strontium (Sr)-borate as a yellow-emitting phosphor and its application to the fabrication of white light-emitting diodes (LEDs). Synthesis of Eu2+-doped Sr-borate phosphors was finely tuned for obtaining the efficient yellow luminescence through varying host composition, Eu concentration, and firing temperature. The 1300 °C-fired Eu2+-doped Sr3B2O6, which was found to be the most efficient candidate to date, was used for white LED fabrication. Their optical properties were evaluated, resulting in warm white lights with CIE chromaticity coordinates of (0.340–0.372, 0.287–0.314) and color rendering indices of 75–77 under the forward currents of 5–40 mA.  相似文献   

3.
Different crystal structure of TeO2 nanoparticles were used as the host materials to prepare the Er3+/Yb3+ ions co-doped upconversion luminescent materials. The TeO2 nanoparticles mainly kept the original morphology and phase after having been co-doped the Er3+/Yb3+ ions. All the as-prepared TeO2:Er3+/Yb3+ nanoparticles showed the green emissions (525 nm, 545 nm) and red emission (667 nm) under 980 nm excitation. The green emissions at 525 nm, 545 nm and red emission at 667 nm were attributed to the 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions, respectively. For the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, three-photon process involved in the green (2H11/2 → 4I15/2) emission, while two-photon process involved in the green (4S3/24I15/2) and red (4F9/2 → 4I15/2) emissions. For the β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, two-photon process involved in the green (2H11/2 → 4I15/2), green (4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) emissions. It suggested that the crystal structure of TeO2 nanoparticles had an effect on transition processes of the Er3+/Yb3+ ions. The emission intensities of the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles and β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles were much stronger than those of the (α + β)-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles.  相似文献   

4.
We demonstrate the upconversion-photoluminescence spectra of Er3+, Yb3+ and Li+ ions doped ZrO2 nanocrystals. By introducing Li+, emission intensities of single green and single red band increase by a factor of 1.93 and 1.65, respectively. Powder X-ray diffraction data and decreased slopes of the excitation power dependences on upconverted emission intensities give evidences that Li+ ions can tailor the local structure of host lattice and improve energy transfer processes from Yb3+ to Er3+, respectively.  相似文献   

5.
Yb2+, Yb3+ co-doped silica glasses were prepared by solid state reaction under vacuum condition for the first time. The luminescence properties of Yb2+-doped silica glass were investigated. There are four strong absorption bands in the Ultraviolet (UV) light region due to the 4f14-4f135d1 transition of the Yb2+ ions. The main emission wavelength of the Yb2+-doped silica glass was around 530 nm by the excited wavelength of 398 nm. The full width at half maximum (FWHM) of the excitation and emission bands were 137 nm, 165 nm respectively. The results suggest the Yb2+-doped silica glasses may be the potential medium for white light sources based on near UV LED chip.  相似文献   

6.
Emission properties of Ho3+ at 2.0 μm and the energy transfer mechanism between Yb3+, Er3+ and Ho3+ ions in fluorophosphate glasses are investigated. The measured emission spectra show that the 5I7 → 5I8 transition of Ho3+ upon 980 nm laser diode excitation is strong. Judd–Ofelt intensity parameters (Ωλ, λ = 2, 4, 6), spontaneous transition probability (Arad), radiative lifetime (τr), absorption cross section (σa), stimulated emission cross section (σe) and FWHM ×  for the transition of Ho3+: 5I7 → 5I8 are calculated and discussed. The obtained results show that the present Yb3+/Er3+/Ho3+ triply-doped fluorophosphate glass can be identified to be a promising material at 2.0 μm emission.  相似文献   

7.
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(3P0 → 1G4), Yb3+(2F7/2 → 2F5/2) energy transfer step takes place, significant Pr3+1G4 emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion.  相似文献   

8.
The vacuum ultraviolet excited luminescent properties of Eu3+, Tb3+, Dy3+, Sm3+ and Tm3+ in the matrices of Ca4Y6(SiO4)6O were investigated. The bands at about 173 nm in the vacuum ultraviolet excited spectra were attributed to host lattice absorption of the matrix Ca4Y6(SiO4)6O. For Eu3+-doped samples, the O2− → Eu3+ CTB was identified at 258 nm. Typical 4f-5d absorption bands in the region of 195-300 nm were observed in Tb3+-doped samples. For Dy3+-doped and Sm3+-doped samples, the broad excitation bands consisted of host absorptions, CTB and f-d transition. For Tm3+-doped samples, the O2− → Tm3+ CTB was located at 191 nm. About the color purity and emission intensity, Ca4Y6(SiO4)6O:Tb3+ is an attractive candidate of green light PDP phosphor, and Ca4Y6(SiO4)6O:Dy3+ has potential application in the field of mercury-free lamps.  相似文献   

9.
Shaped single crystals of (Yb0.05LuxGd0.95−x)Ga5O12 (0.0x0.9) and Yb0.15Gd0.15Lu2.7(AlxGa1−x)O12 (0.0x1.0) were grown by the modified micro-pulling-down method. Continuous solid solutions with garnet structure and a linear compositional dependency of crystal lattice parameter in the system Yb:(Gd,Lu)3(Ga,Al)5O12 are formed. Measured optical absorption spectra of the samples show 4f–4f transitions related to Gd3+ ion at 275 and 310 nm, and also an onset of charge transfer transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240 nm. A complete absence of Yb3+ charge transfer luminescence under X-ray excitation in any of the investigated samples was explained by the overlapping of charge transfer absorption of Yb3+ by that of Gd3+ ions. For specific composition of Lu1.5Gd1.5Ga5O12 an intense defect––host lattice-related emission, which achieve of about 40% integrated intensity compared with Bi4Ge3O12, was found.  相似文献   

10.
In this paper we will present VUV spectroscopy experiments performed at the Superlumi station of Hasylab, DESY, Hamburg, on samples of BaF2 crystals activated with Ce and BaF2, (Ba,La)F2 crystals activated with Er. The results of these experiments include time resolved luminescence and luminescence excitation spectra obtained under wavelength selective VUV and UV excitation by pulsed synchrotron radiation.We will reveal the information provided by the VUV/UV excitation spectra of the Ce3+ 5d → 4f as well as Er3+ 4fn−15d → 4fn and 4fn → 4fn emissions on energy transfer mechanisms from the fluoride host to the rare earth ion. We will demonstrate that the fast energy transfer channels involve bound excitons while the generation of free electrons and holes leads to slower processes dependant on hole and/or electron trapping.We will demonstrate that differences between the excitation spectra of the 5d → 4f emission in Ce and 4f105d → 4f11 emission in Er activated BaF2 are generated by the coupling of the 4f → 5d transition to the 4f10 core of the Er3+ ion. We will also identify the additional band, absent for Ce, which is due to the exchange split high spin (HS) state of the 4f105d configuration responsible for the slow decay of the excited Er3+ ions in BaF2 and (Ba,La)F2.Finally we will provide evidence and explain why the dominant VUV 4f105d → 4f11 Er3+ emission in BaF2 is spin-forbidden and slow while in the mixed (Ba,La)F2 crystals it is spin-allowed and fast.  相似文献   

11.
Emission and excitation spectra and luminescence decay kinetics were studied for Pr3+-doped Lu3Al5O12 and Y3Al5O12 single crystalline films (SCF) grown by the liquid phase epitaxy method from a PbO-based flux. The influence of lead-induced centers on their scintillation characteristics was clarified. It was found that the influence of single Pb2+-based centers on the characteristics of Pr3+ centers due to the Pb2+ → Pr3+ energy transfer was weak. However, an overlap of the emission spectra of single and dimer lead-induced centers with the emission spectrum of Pr3+ ions, and especially a strong overlap of the 4f–5d1 absorption band of Pr3+ ions with the slow emission of localized excitons in the 290 nm band had a considerable influence on the scintillation characteristics of the Pr3+-doped SCF.  相似文献   

12.
This communication reports optical properties and radiation responses of Pb2+ 0.5 and 1.0 mol%-doped YCa4O(BO3)3 (YCOB) single crystals grown by the micro-pulling-down (μ-PD) method for neutron scintillator applications. The crystals had no impurity phases according to the results of X-ray powder diffraction. These Pb2+-doped crystals demonstrated blue-light luminescence at 330 nm because of Pb2+1S0-3P0,1 transition in the photoluminescence spectra. The main emission decay component was determined to be about 250-260 ns under 260 nm excitation wavelength. When irradiated by a 252Cf source, the relative light yield of 0.5% Pb2+-doped crystal was about 300 ph/n that was determined using the light yield of a reference Li-glass scintillator.  相似文献   

13.
A well oriented YVO4 single crystal, with 5% Yb3+ and 2% Tm3+ nominal doping, was investigated using the Raman and EPR techniques.The EPR measurements suggest that Yb3+ ions occupy eight-coordinated Y3+ sites forming bisdisphenoids of the D2d symmetry. An inhomogeneous distribution of rare-earth ions leads to a significant distortion of the local point symmetry (C1). It seems that strong dipole–dipole interactions between Yb3+ ions are responsible for the distortion. As a result, two types of ytterbium magnetic centers appear. They correspond to paired magnetic centers and distorted isolated paramagnetic centers that are strongly sensitive to the magnetic field directions and some imperfections of the crystal. Pair centers can be recorded through the rotation around the c-crystal axis, whereas isolated centers can be measured when the crystal is rotated around the a-crystal axis. With the increasing temperature, the ytterbium signal disappeared at about 23 K and a group of narrow lines became visible. These lines, observed in the range of 240–550 mT, correspond to the Gd3+ (S = 7/2) ions, doped to the structure unintentionally from the basic materials.  相似文献   

14.
The β-Ca2SiO4: (Er3+, Yb3+) powders were synthesized by the simple solid-state process. The obtained samples were given characterizations of X-ray diffraction, Fourier-transform infrared, transmission electron microscopy, and luminescence. The samples have monoclinic parawollastonite phase and irregular morphology. Under the excitation at 980 nm, the obtained β-Ca2SiO4: (Er3+, Yb3+) samples show the intense upconversion (UC) emission. The dosage of Yb3+ has obvious influence on the emission intensities of β-Ca2SiO4: (Er3+, Yb3+) samples. Also, the emission intensity increases gradually with the increasing pump power from 350 to 600 mW. On the basis of luminescent properties of samples, we can conclude that the UC emission originates from the biphotonic process.  相似文献   

15.
A Ho3+-doped NaLa(MoO4)2 single crystal was grown by the Czochralski method. The polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay curves of the crystal were measured at room temperature. The spontaneous emission probabilities, radiative lifetimes, and fluorescence branching ratios of the typical fluorescence multiplets of Ho3+ ions were calculated. The polarized stimulated emission and gain cross-sections of the 5I7 → 5I8 transition were obtained. The results show that the Ho3+:NaLa(MoO4)2 crystal is a promising gain medium for tunable and ultrashort pulse lasers operating around 2.0 μm.  相似文献   

16.
Lanthanide-doped uniform pure cubic phase Y2O3 hollow microspheres have been successfully synthesized via a facile, high yield urea-based coprecipitation route with assistant of carbon spheres templates. The diameter and shell thickness of the microspheres can be manipulated by adjusting carbon sphere templates. Under a 980 nm excitation, Yb3+/Er3+, Er3+, Yb3+/Tm3+-doped Y2O3 hollow microspheres emit bright upconversion red, green, blue light with high purity, respectively, while Eu3+, Eu3+/Tb3+-doped Y2O3 hollow microspheres exhibit intense downconversion red light under the excitation of 254 nm ultraviolet light. Especially, the 610 nm emission intensity of Eu3+ in the Eu3+/Tb3+-codoped Y2O3 hollow microspheres is almost 5 times of that in the Y2O3:Eu3+ hollow microspheres indicating the occurring of the energy transfer from Tb3+ to Eu3+ ions.  相似文献   

17.
A high optical quality Er3+-doped NaGd(WO4)2 single crystal with dimensions of ∅18 × 50 mm3 has been grown using the Czochralski method. The structure of the grown crystal was proved by X-ray powder diffraction. The accurate concentration of Er3+ ion in the crystal was measured. The absorption spectra, fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Green up-conversion luminescence has been observed when the crystal is excited at 965 nm.  相似文献   

18.
Triply-doped single crystals KGd(WO4)2:Er3+/Yb3+/Tm3+, KGd(WO4)2:Tb3+/Yb3+/Tm3+ and KGd(WO4)2:Pr3+/Yb3+/Tm3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host’s conduction band and other possible defects of the KGd(WO4)2 crystal lattice in the up-conversion processes.  相似文献   

19.
《Optical Materials》2005,27(3):475-479
Optical spectroscopy of the green emission of erbium in KGd(WO4)2 (KGW) single crystals codoped with ytterbium ions is investigated. To do this, we firstly grew good-optical-quality KGW single crystals doped with Er3+ and Yb3+ at several dopant concentrations by the Top-seeded-solution-growth slow-cooling method (TSSG). Green photoluminescence of Er3+ in KGW host was studied at room temperature (RT) and low temperature (10 K) by means of Yb3+ sensitization after infrared excitation at 981 nm (10194 cm−1). We calculated the emission and gain cross-sections and compared these with those of other known Er3+-doped laser materials like LiYF4 :Er (YLF:Er) and Y3Al5O12:Er (YAG:Er) at RT. Our study also focused on determining the optimal concentration of ions for generating the most intense green emission. We measured the lifetime of the green emission after infrared pump at several Yb3+ concentrations. From the low-temperature emission experiments, we determined the energy position of the sublevels of the ground state of erbium.  相似文献   

20.
Near-infrared (NIR) quantum cutting luminescent materials Li2TeO4 doped with Pr3+ and Yb3+ were synthesized by solid-state reaction method. The dependence of Yb3+ doping concentration on the visible- and NIR-emissions, decay lifetime, and quantum efficiencies of the phosphors are investigated. Quantum cutting down-conversion involving 647 nm red emission and 960-1050 nm broadband near-infrared emission for each 487 nm blue photon absorbed is realized successfully in the resulting phosphors, of which the process of near-infrared quantum cutting could be expressed as 3P0(Pr3+) → 2F5/2(Yb3+) + 2F5/2(Yb3+). The maximum quantum cutting efficiency approaches up to 166.4% in Li2TeO4: 0.3 mol%Pr3+, 1.8 mol%Yb3+ sample corresponding to the 66.4% value of energy transfer efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号