首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Inter-governmental Panel on Climate Change (IPCC) reported that human activities result in the production of greenhouse gases (CO2, CH4, N2O and CFCs), which significantly contribute to global warming, one of the most serious environmental problems. Under these circumstances, most nations have shown a willingness to suffer economic burdens by signing the Kyoto Protocol, which took effect from February 2005. Therefore, an innovative technology for the simultaneously removal carbon dioxide (CO2) and nitrogen dioxide (NO2), which are discharged in great quantities from fossil fuel-fired power plants and incineration facilities, must be developed to reduce these economical burdens. In this study, a blend of AMP and NH3 was used to achieve high absorption rates for CO2, as suggested in several publications. The absorption rates of CO2, SO2 and NO2 into aqueous AMP and blended AMP+NH3 solutions were measured using a stirred-cell reactor at 293, 303 and 313 K. The reaction rate constants were determined from the measured absorption rates. The effect of adding NH3 to enhance the absorption characteristics of AMP was also studied. The performance of the reactions was evaluated under various operating conditions. From the results, the reactions with SO2 and NO2 into aqueous AMP and AMP+NH3 solutions were classified as instantaneous reactions. The absorption rates increased with increasing reaction temperature and NH3 concentration. The reaction rates of 1, 3 and 5 wt% NH3 blended with 30 wt% AMP solution with respect to CO2/SO2/NO2 at 313 K were 6.05~8.49×10?6, 7.16–10.41×10?6 and 8.02~12.0×10?6 kmol m?2s?1, respectively. These values were approximately 32.3–38.7% higher than with aqueous AMP solution alone. The rate of the simultaneous absorption of CO2/SO2/NO2 into aqueous AMP+NH3 solution was 3.83–4.87×10?6 kmol m?2s?1 at 15 kPa, which was an increase of 15.0–16.9% compared to 30 wt% AMP solution alone. This may have been caused by the NH3 solution acting as an alternative for CO2/SO2/NO2 controls from flue gas due to its high absorption capacity and fast absorption rate.  相似文献   

2.
In this study, the removal efficiency, absorption amount, and loading value of CO2 into aqueous blended 2-amino-2-methyl-1-propanol (AMP)/ammonia (NH3) solutions were measured by using the absorption and regeneration continual process. The effect of adding NH3 to enhance absorption characteristics of AMP was investigated. The performance was evaluated under various operating conditions. As a result, the method of blending AMP and NH3 was not adequate because of a problem with scale formation. Consequently, NH3 of 1, 3, 5, and 7 wt% was added to 30 wt% AMP. Of these additions, 5 wt% NH3 was the optimum concentration because the CO2 removal efficiency and absorption amount were almost 100% and 2.17 kg CO2/kg absorbent, respectively. Also, the scale problem was almost absent. As the regenerator temperature varied from 80–110 °C, the loading of rich amine was almost constant, but the loading of lean amine was decreased as the regenerator temperature increased. Thus, the optimum regenerator temperature was 110 °C in this experiment.  相似文献   

3.
Although aqueous ammonia solution has been focused on the removal of CO2 from flue gas, there have been very few reports regarding the underlying analysis of the reaction between CO2 and NH3. In this work, we explored the reaction of CO2-NH3-H2O system at various operating temperatures: 40 °C, 20 °C, and 5 °C. The CO2 removal efficiency and the loss of ammonia were influenced by the operating temperatures. Also, infrared spectroscopy measurement was used in order to understand the formation mechanism of ion species in absorbent, such as NH2COO, HCO3, CO32−, and NH4+, during CO2, NH3, and H2O reaction. The reactions of CO2-NH3-H2O system at 20 °C and 40 °C have similar reaction routes. However, a different reaction route was observed at 5 °C compared to the other operating temperatures, showing the solid products of ammonium bicarbonates, relatively. The CO2 removal efficiency and the formation of carbamate and bicarbonate were strongly influenced by the operating temperatures. In particular, the analysis of the formation carbamate and bicarbonate by infrared spectroscopy measurement provides useful information on the reaction mechanism of CO2 in an aqueous ammonia solution.  相似文献   

4.
The estimation of regeneration heat of absorbent is important because it is a key factor that has an effect on the process efficiency. In this study, thermal stability and regeneration heat of aqueous amine solutions such as monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP), N-methyldiethanolamine (MDEA), and 1,8-diamino-pmenthane (KIER-C3) were investigated by using TGA-DSC analysis. The thermal characteristics of the fresh and CO2 rich amine solutions were estimated. The CO2 rich amine solutions were obtained by VLE experiments at T=40 °C. The regeneration heat of aqueous MEA solution was 76.991–66.707 kJ/mol-CO2, which is similar to heat of absorption. The reproducibility of the results was obtained. The regeneration heat of aqueous KIER-C3 20 wt% solution (1.68 M) was lower than that of aqueous MEA 30 wt% solution (4.91 M). Therefore, the KIER-C3 can be used as an effective absorbent for acid gas removal.  相似文献   

5.
The absorption rate (R A ) of carbon dioxide was measured into an aqueous nanometer sized colloidal silica solution of 0–31 wt% and N-methyldiethanolamine of 0–2 kmol/m3 in a flat-stirred vessel for the various sizes and speeds of at 25 °C and 0.101 MPa to obtain the volumetric liquid-side mass transfer coefficient (k L a) of CO2. The film theory accompanied by chemical reaction between CO2 and N-methyldiethanolamine was used to estimate the theoretical value of absorption rate of CO2. An empirical correlation formula containing the relationship between k L a and rheological property of the aqueous colloidal silica solution was presented. The value of R A in the aqueous colloidal silica solution was decreased by the reduction of k L a due to elasticity of the solution.  相似文献   

6.
Carbon dioxide (CO2) is a major greenhouse gas, the emissions of which should be reduced. There are various technologies for the effective separation of CO2. Of these, chemical absorption methods are generally accepted as the most effective. The monoethanolamine (MEA) process is an effective way to remove CO2, but is an expensive option for the separation of CO2 from massive gas-discharging plants. Therefore, ammonia solution, which is less expensive and more effective than MEA, was used for the removal of CO2. In this study, the physical solubility of N2O in (ammonia+water), (ammonia+2-amino-2-methyl-1-propanol+water), (ammonia+glycerol+water) and (ammonia+ ethylene glycol+water) was measured at 293, 303, 313, 323 K. Additive concentrations of 1, 3, and 5 wt% AMP, glycerol and ethylene glycol were added for each 9 wt% ammonia solution. A solubility apparatus was used to investigate the solubility of N2O in ammonia solutions. The diffusivity was measured with a wetted wall column absorber. The “N2O analogy” is used to estimate the solubility and diffusivity of CO2 in the aqueous ammonia solutions. OriginPro 7.5 was used to correlate the solubility and diffusivity of N2O in ammonia solutions. The parameters of the correlation were determined from the measured solubility and diffusivity.  相似文献   

7.
The specific heat capacity, heat of CCO2 absorption, and CCO2 absorption capacity of aqueous solutions of potassium carbonate (K2CO3)+2-methylpiperazine (2-MPZ) and monoethanolamine (MEA) were measured over various temperatures. An aqueous solution of K2CO3+2-MPZ is a promising absorbent for CCO2 capture because it has high CCO2 absorption capacity with improved absorption rate and degradation stability. Aqueous solution of MEA was used as a reference absorbent for comprison of the thermodynamic characteristics. Specific heat capacity was measured using a differential scanning calorimeter (DSC), and heat of CCO2 absorption and CCO2 absorption capacity were measured using a differential reaction calorimeter (DRC). The CCO2-loaded solutions had lower specific heat capacities than those of fresh solutions. Aqueous solutions of K2CO3+2-MPZ had lower specific heat capacity than those of MEA over the temperature ranges of 303-353 K. Under the typical operating conditions for the process (CCO2 loading=0.23mol-CCO2·mol?1-solute in fresh solution, T=313 K), the heat of absorption (?ΔHabs) of aqueous solutions of K2CO3+2-MPZ and MEA were approximately 49 and 75 kJ·mol-CO2, respectively. The thermodynamic data from this study can be used to design a process for CCO2 capture.  相似文献   

8.
The effects of elevated atmospheric CO2 concentration on N2O fluxes, instant CO2 exchange and the biomass production of timothy (Phleum pratense) were studied in the laboratory. Three sets of 12 farmed sandy soil mesocosms sown with Phleum pratense were fertilised with a commercial fertiliser in order to add 5, 10 and 15 g N m−2, and equally distributed in four thermo-controlled greenhouses. In two of the greenhouses, the CO2 concentration was kept at atmospheric concentration (360 μmol mol−1), and in the other two at double the ambient concentration (720 μmol mol−1). Forage was harvested and the plants fertilised twice during the N2O measurements. This was followed by an extra fertilisation and harvesting. After the third harvest, the growth of P. pratense was maintained at a height of 18 cm for measurements of instant CO2 exchange, performed in two growth chambers. N2O exchange was monitored using a closed chamber technique and a gas chromatograph. Instant CO2 exchange was monitored using an infrared gas analyser. N2O was emitted from the soil in the low, moderate and high N treatments at both CO2 concentrations when the moisture content was low, the N2O probably being mainly derived from nitrification. The highest flux (3303 μg N2O m−2 h−1) occurred in the highest N treatment before thinning the stand of P. pratense under elevated CO2 concentration. P. pratense was acclimated to the elevated CO2 concentration: the NEE and P G of the elevated growth of P. pratense decreased, in contrast to the fluxes of the normal ambient growth, when measured at the changed CO2 concentration (ambient). The rate of respiration (R TOT) in the agroecosystem did not increase due to the elevated CO2 concentration, but instead the results indicated decreased R TOT (on average 2049 and 1808 mg CO2 m−2 h−1 at ambient and elevated CO2 concentration, respectively) when there was an abundant N supply. This infers the possibility of enhanced C accumulation in agriculture mineral soil via P. pratense under an increased atmospheric CO2 supply.  相似文献   

9.
In this study, removal of SO2 from gas stream was carried out by using microporous polyvinylidene fluoride (PVDF) asymmetric hollow fiber membrane modules as gas-liquid contactor. The asymmetric hollow fiber membranes used in this study were prepared polyvinylidene fluoride by a wet phase inversion method. Water was used as an internal coagulant and external coagulation bath for all spinning runs. An aqueous solution containing 0.02 M NaOH was used as the absorbent. This study attempts to assess the influence of PEG additive, absorbent flow rate, SO2 concentration, gas flow rate and gas flow direction on the SO2 removal efficiency and overall mass transfer coefficient. The effect of liquid flow rate on SO2 removal efficiency shows that at very low liquid flow rate, the NaOH available at the membrane surface for reacting with SO2 is limited due to the liquid phase resistance. As liquid flow rate is above the minimum flow rate which overcomes the liquid phase resistance, the SO2 absorption rate is controlled by resistance in the gas phase and the membrane. The SO2 absorption rate with inlet SO2 concentration was sharply increased by using hollow fiber membranes compared to a conventional wetted wall column because the former has higher gas liquid contacting area than the latter. The mass transfer coefficient is independent of pressure. When the gas mixture was fed in the shell side, the removal efficiency of SO2 declined because of channeling problems on the shell side. Also, the addition of PEG in polymer dopes increased SO2 removal efficiency. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

10.
Carbon dioxide was absorbed into an aqueous nanometer-sized colloidal silica solution in a flat-stirred vessel at 25 °C and 101.3 kPa to measure the absorption rate of CO2. The concentrations of silica were in the range of 0–31 wt% and the sizes were 7, 60, and 111 nm. The solution contained monoethanolamine (MEA) of 0–2.0 kmol/m3. The volumetric liquid-side mass transfer coefficient (k L a) of CO2 was correlated with the empirical formula representing the rheological property of silica solution. The use of the aqueous colloidal silica solution resulted in a reduction of the absorption rate of CO2 compared with Newtonian liquid based on the same viscosity of the solution. The chemical absorption rate of CO2 was estimated by film theory using k L a and physicochemical properties of CO2 and MEA.  相似文献   

11.
《分离科学与技术》2012,47(3):543-568
Abstract

Carbon dioxide and sulfur dioxide were simultaneously absorbed into aqueous 2-amino-2-methyl-1-propanol (AMP) in a stirred semi-batch tank with a planar gas-liquid interface within a range of 0–4.0 kmol/m3 of AMP, 0.03–0.3 mole fraction of CO2, 0.005–2 mole fraction of SO2, and 298–318 K. Absorption data of each gas in the CO2-AMP and SO2-AMP systems are obtained to verify their reaction regimes, based on film theory, respectively, which are used to analyze the simultaneous absorption mechanisms of CO2 and SO2 in the CO2-SO2-AMP systems. The measured absorption rates of CO2 and SO2 are compared to those formulated by an approximate solution of the mass balances with simultaneous reactions.  相似文献   

12.
The redox and transport behavior of monovalent copper species in an ammonium imide-type ionic liquid, trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide (TMHA-Tf2N) were examined with a micro-disc electrode to clarify its applicability to, for example, electroplating. It was found that the diffusion coefficient of Cu(I) ions in TMHA-Tf2N containing 12 mmol dm−3 Cu(I) ions was 1.2 × 10−6 cm2 s−1 and the redox potential of Cu(I)/Cu was in the potential range 0.1–0.2 V vs. I /I 3 at 50 °C. The diffusion coefficient was one order smaller than that of Cu(II) ions in aqueous solution due to the high viscosity of the ionic liquid. The diffusion coefficient of Cu(I) ion increased with rising temperature and was 1.0 × 10−5 cm2 s−1 at 112 °C, which was comparable to that of Cu(II) ions in aqueous CuSO4 solutions at ambient temperature. This is accounted for by the drastic decrease in the viscosity of the ionic liquid solution with increasing temperature. The activation energy of diffusion was estimated to be 39 kJ mol−1 in the ionic liquid solution.  相似文献   

13.
The temperature-concentration dependence of the electrical conductivity of glasses in the Na2SO4-NaPO3 and Na2O-P2O5 systems has been investigated. Based on the obtained experimental data (IR spectra, density, microhardness, sound velocity, and paper chromatography), it has been demonstrated that SO42− ions form terminal groups through the incorporation into polyphosphate fragments of the structure of glasses in the Na2SO4-NaPO3 system. An increase in the electrical conductivity of glasses in this system by a factor of ∼1000 (as compared to NaPO3) at 25°C and a decrease in the activation energy for electrical conduction from 1.40 to 1.10 eV have been interpreted from the viewpoint of the decrease in the dissociation energy E d of polar sulfate phosphate structural chemical fragments formed in the glass bulk upon introduction into sodium metaphosphate Na2SO4. This leads to an increase in the number of dissociated sodium ions, which are charge carriers, and to a decrease in the energy (E a) of their activation shift in the sublattice formed by sulfate phosphate fragments of the structure.  相似文献   

14.
PSA [poly-(styrene-methyl acrylic acid)] latex particle has been taken into account as template material in SiO2 hollow spheres preparation. TiO2-doped SiO2 hollow spheres were obtained by using the appropriate amount of Ti(SO4)2 solution on SiO2 hollow spheres. The photodecomposition of the MB (methylene blue) was evaluated on these TiO2-doped SiO2 hollow spheres under UV light irradiation. The catalyst samples were characterized by XRD, UV-DRS, SEM and BET. A TiO2-doped SiO2 hollow sphere has shown higher surface area in comparison with pure TiO2 hollow spheres. The 40 wt% TiO2-doped SiO2 hollow sphere has been found as the most active catalyst compared with the others in the process of photodecomposition of MB (methylene blue). The BET surface area of this sample was found to be 377.6 m2g−1. The photodegradation rate of MB using the TiO2-doped SiO2 catalyst was much higher than that of pure TiO2 hollow spheres.  相似文献   

15.
In this work new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated concentrated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) over the temperature range 303–323 K are presented. The absorption experiments have been carried out in a wetted wall contactor over CO2 partial pressure range of 5–15 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt% keeping the total amine concentration in the solution at 40 wt%. The physical properties such as density and viscosity of concentrated aqueous AMP+PZ, as well as physical solubility of CO2 in concentrated aqueous AMP+PZ, are also measured. New experimental data on vapor liquid equilibrium (VLE) of CO2 in these concentrated aqueous solutions of AMP+PZ in the temperature range of 303–323 K have also been presented. The VLE measurements are carried out in an equilibrium cell in CO2 pressure range of 0.1–140 kPa. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory is used to represent the VLE of CO2 in aqueous AMP+PZ. Liquid phase speciations are estimated considering the nonideality of concentrated solutions of the amines and the calculated activity coefficients by eNRTL model. The CO2 absorption in the aqueous amine solutions is described by a combined mass transfer-reaction kinetics model developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental results of the rates of absorptions of CO2 into aqueous AMP+PZ.  相似文献   

16.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

17.
Investigations were conducted to purify crude Li2CO3 via direct carbonation with CO2-water solutions at atmospheric pressure. The experiments were carried out in a slurry bubble column reactor with 0.05 m inner diameter and 1.0 m height. Parameters that may affect the dissolution of Li2CO3 in the CO2-water solutions such as CO2-bubble perforation diameter, CO2 partial pressure, CO2 gas flow rate, Li2CO3 particle size, solid concentration in the slurry, reaction temperature, slurry height in the column and so on were investigated. It was found that the increases of CO2 partial pressure, and CO2 flow rate were favorable to the dissolution of Li2CO3, which had the opposite effects with Li2CO3 particle size, solid concentration, slurry height in the column and temperature. On the other hand, in order to get insight into the mechanism of the refining process, reaction kinetics was studied. The results showed that the kinetics of the carbonation process can be properly represented by 1−3(1−X)2/3+2(1–X)=kt+b, and the rate-determining step of this process under the conditions studied was product layer diffusion. Finally, the apparent activation energy of the carbonation reaction was obtained by calculation. This study will provide theoretical basis for the reactor design and the optimization of the process operation.  相似文献   

18.
19.
The polytherms of ice melting in sections of the Ca(NO3)2-Mg(NO3)2-CO(NH2)2-H2O system with different component ratios were studied in the temperature interval from 0 to −40°C. A series of nitrate and nitrate-carbonate reagents that are promising for the creation of anti-acing reagents were found, which form eutectics with ice at temperatures from −25 to −39°C. Their properties, viz., melting properties with respect to ice and corrosiveness on metals and alloys, were determined. An effective corrosion inhibitor was selected.  相似文献   

20.
To examine the characteristics of absorption and regeneration, the simultaneous removal efficiency of carbon dioxide/sulfur dioxide (CO2/SO2), the CO2 absorption amount, and the CO2 loading value of an ammonia (NH3) solution added to 2-amino-2-methyl-1-propanol (AMP) were investigated using the continuous absorption and regeneration process. The performances of this system, such as the removal efficiency of CO2 and SO2, absorption amount, and CO2 loading, were evaluated under various operating conditions. Based on the experimental study, the optimum conditions were a liquid circulation rate of 90 mL/min and gas flow rate of 7.5 L/min. The addition of NH3 into aqueous AMP solution increased the absorption rate and loading ratio of CO2 and raised the removal efficiencies of CO2 and SO2 to over 90% and over 98%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号