首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrical and dielectric properties of reactively sputtered Ta2O5 thin films with Cu as the top and bottom electrodes forming a simple metal insulator metal (MIM) structure, Cu/Ta2O5/Cu/n-Si, were studied. Ta2O5 films subjected to rapid thermal annealing (RTA) at 800°C for 30 s in N2 ambient crystallized the film, decreased the leakage current density and resulted in reliable time-dependent dielectric breakdown characteristics. The conduction mechanism at low electric fields (<100 kV/cm) is due to Ohmic conduction; however, the Schottky mechanism becomes predominant at high fields (>100 kV/cm). Present studies demonstrate the use of Cu as a potential electrode material to replace the conventional precious metal electrodes for Ta2O5 storage capacitors.  相似文献   

2.
Chromium-doped zinc gallate powder is synthesized via a solid-state reaction and subsequently deposited as a thin film on quartz substrates by using a pulsed laser deposition technique under two different deposition conditions. The films are characterized with X-ray diffraction, scanning electron microscopy, UV-vis spectrophotometry and luminescent measurements. As the oxygen pressure is changed from 0 to 1 Pa, we find that the grain size gets smaller, the crystallinity improves, the band-gap energy increases, the excitation peaks of the charge transfer band exhibit a remarkable blue-shift from 263 to 247 nm and the intensity of the red emission (694 nm) is enhanced. The results suggest that the structural and luminescent properties of ZnGa2O4:Cr3 + thin film phosphors are improved by deposition at an oxygen pressure of 1 Pa.  相似文献   

3.
Tantalum and niobium oxide optical thin films were prepared at room temperature by plasma-enhanced chemical vapor deposition using tantalum and niobium pentaethoxide (M(OC2H5)5) precursors. We studied the evolution of their optical and microstructural properties as a result of annealing over a broad temperature range from room temperature up to 900 °C. The as-deposited films were amorphous; their refractive index, n, and extinction coefficient, k, at 550 nm were n = 2.13 and k < 10− 4 for Ta2O5, and n = 2.24 and k < 10− 4 for Nb2O5. The films contained a small amount of residual carbon (∼ 2-6 at.%) bonded mostly to oxygen. During annealing, the onset of crystallization was observed at approximately TC1 = 650 °C for Ta2O5 and at TC1 = 450 °C for Nb2O5. Upon annealing close to T1 (300 °C for Nb2O5 and 400 °C for Ta2O5), n at 550 nm decreased by less than 1%. This was correlated with the decrease of carbon content, as suggested by Fourier transform infrared spectroscopy, elastic recoil detection and static secondary ion mass spectroscopy (SIMS) results. During annealing, we observed phase transition from the δ- (hexagonal) phase to the L- (orthorhombic) phase between 800 °C and 900 °C for Ta2O5, and between 600 °C and 700 °C for Nb2O5. The structural changes were also marked by silicon diffusion from the substrate into the oxide layer at annealing temperatures above 500 °C for Ta2O5 and above 400 °C for Nb2O5. As a consequence of oxygen, silicon and metal interdiffusion, the interface between the Si substrate and the metal oxide (Ta2O5 or Nb2O5) is characterized by its broadening, well documented by spectroscopic ellipsometry and SIMS data.  相似文献   

4.
We present the synthesis and electrical characterization of amorphous nanocomposite layers made of metallic nanoclusters embedded in an alumina matrix (nc-Co:Al2O3). The nanostructured materials were fabricated using a pulsed laser deposition (PLD)-derived method based on a nano-cluster generator coupled with a conventional PLD system for host medium co-deposition. The films were subjected to a detailed structural study carried out using high-resolution transmission electron microscopy and atomic force microscopy. The clusters inserted in the alumina matrix are metallic, well crystallized and possess an fcc structure with an average diameter centered at ∼ 2 nm. Dielectric constant and electrical conduction mechanisms of nc-Co:Al2O3 layers integrated in metal-insulator-metal capacitive structures were studied for different doping levels and for a broad temperature range (303-473 K). It was concluded that the dielectric constant in the films depends on the doping levels while the major electrical conduction mechanisms are best described by the space charge limited currents formalism, in which the current density J on an applied voltage V follow a power-law dependence (J ∼ Vn) at applied voltages higher than ∼ 2 V. Such composite may find immediate applications as dielectric layers with controlled discharging conduction paths in Radio Frequency-Micro-Electro-Mechanical Systems capacitive structures.  相似文献   

5.
This paper reviews the present knowledge on tantalum pentoxide (Ta2O5) thin films and their applications in the field of microelectronics and integrated microtechnologies. Different methods used to produce tantalum oxide layers are described, emphazing elaboration mechanisms and key parameters for each technique. We also review recent advances in the deposition of Ta2O5 in the particular field of microelectronics where high quality layers are required from the structural and electrical points of view. The physical, structural, optical, chemical and electrical properties of tantalum oxide thin films on semiconductors are then presented and essential film parameters, such as optical index, film density or dielectric permittivity, are discussed. After a reminder of the basic mechanisms that control the bulk electrical conduction in insulating films, we carefully examine the origin of leakage currents in Ta2O5 and present the state-of-the-art concerning the insulating behaviour of tantalum oxide layers. Finally, applications of tantalum oxide thin films are presented in the last part of this paper. We show how Ta2O5 has been employed as an antireflection coating, insulating layer, gate oxide, corrosion resistant material, and sensitive layer in a wide variety of components, circuits and sensors.  相似文献   

6.
Hydrogen-containing Ta2O5 (Ta2O5:H) thin films are considered to be a candidate for a proton-conducting solid-oxide electrolyte. In this study, Ta2O5:H thin films were prepared by reactively sputtering a Ta metal target in an O2 + H2O mixed gas. The effects of sputtering power and post-deposition heat treatment on the ion conducting properties of the Ta2O5:H thin films were studied. The ionic conductivity of the films was improved by decreasing the RF power and a maximum conductivity of 2 × 10−9 S/cm was obtained at an RF power of 20 W. The ionic conductivity decreased by heat-treatment in air, and no ion-conduction was observed after treatment at 300 °C due to the decrease in hydrogen content in the films.  相似文献   

7.
Pulsed laser deposited nanocrystalline V2O5 thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and optical spectroscopy. The films were deposited on amorphous glass substrates, keeping the O2 partial pressure at 13.33 Pa and the substrate temperature at 220 °C. The characteristics of the films were changed by varying the laser fluence and repetition rate. XRD revealed that films are nanocrystalline with an orthorhombic structure. XPS shows the sub-stoichiometry of the films, that generally relies on the fact that during the formation process of V2O5 films, lower valence oxides are also created. From the HRTEM images, we observed the size evolution and distribution characteristics of the clusters in the function of the laser fluence. From the spectral transmittance we determined the absorption edge using the Tauc plot. Calculation of the Bohr radius for V2O5 is also reported.  相似文献   

8.
KNbO3 thin films were deposited on SrTiO3 substrates by pulsed laser deposition. The X-ray diffraction patterns highlight an epitaxial growth according to the (011) orientation. This epitaxial growth was then confirmed by Electron Channeling Pattern. In agreement with the structural characteristics the dense microstructure consists in regular and ordered grains. Dielectric measurements were performed in the 20 Hz to 1 MHz frequency range on a KNbO3 thin film grown on 2 at.% Nb doped (100)SrTiO3 substrate in a large range of temperature in order to investigate the paraelectric-ferroelectric transition. Measurements at room temperature revealed a dielectric constant of 450 at 10 kHz and a minimum value of the loss tangent of 0.075 at 100 kHz. Dielectric study in the 20-600 °C temperature range showed a maximum of permittivity at the Curie temperature Tc = 410 °C and evidenced a “progressive” first-order phase transition, different from the classical “diffuse” transition.  相似文献   

9.
In2O3 and SnO2 multilayered semiconducting thin-films have been deposited on Si substrates by reactive pulsed laser ablation (RPLA), with the aim of evaluating their photoconductive and photovoltaic properties. A photo-stimulated electrical study has been performed on the films as a function of oxygen pressure during the deposition process and compared to their microstructure. Temperature-dependent resistivity measurements have been performed to determine the charge carrier transport mechanisms. The experimental demonstration of active photogeneration has been achieved and the influence of deposition parameters on the film structural properties has been correlated to the photovoltaic performance (open-circuit voltage, short-circuit current and output power).  相似文献   

10.
Well-oriented, crystalline GaN films were grown on (110) sapphire substrates in reactive atmospheres of N2 and NH3 by pulsed laser deposition. GaN targets were ablated at 2.8 J cm−2 and the substrate temperature was varied from 500 to 700°C. The background gas pressure was varied from 0.04 to 0.3 mbar. All the films had a wurtzite structure. The crystal quality and preferential orientation depended on the substrate temperature, laser fluence and the presence of the nitriding atmosphere. For both N2 and NH3, the most resistive films were preferentially orientated in the [000l] direction. For 700°C the film resistivity was found to increase from 10−3 Ω cm when deposited in NH3 to 102 Ω cm when deposited in N2. The band-gap, obtained from optical transmission measurements shifted from 3.1 to 3.4 eV. Violet photoluminescence was found in all samples and was centered at 3.2 eV with a full width at half maximum of 0.2 eV. A broad peak in the yellow, centered at 2.1 eV, was detected for films grown in vacuum and ammonia.  相似文献   

11.
Top-contact Copper phthalocyanine (CuPc) thin-film field-effect transistor (TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer as the dielectric was fabricated and investigated. With the multi-layer dielectric, drive voltage was remarkably reduced. A relatively large on-current of 1.1 × 107 A at a VGS of −15 V was obtained due to the strong coupling capability provided by the STS multilayer gate insulator. The device shows a moderate performance: saturation mobility of μsat = 6.12 × 104 cm2/V s, on-current to off-current ratio of Ion/Ioff = 1.1 × 103, threshold voltage of VTH = −3.2 V and sub-threshold swing SS = 1.6 V/dec. Atomic force microscope images show that the STS multilayer has a relative smooth surface. Experiment results indicate that STS multilayer is a promising insulator for the low drive voltage CuPc-based TFTs.  相似文献   

12.
Da Li  Aiwu Zhao  Weiwei Dong 《Vacuum》2010,84(6):851-5902
High-quality CuCrO2 films were prepared by pulsed laser deposition (PLD). The film deposited with the pulse energy density (PED) of 2 mJ/cm2 is highly c-axis oriented. The refractive index of the CuCrO2 films is about 1.29 obtained by transmission spectra of the films, which implies that the CuCrO2 film will be a potential antireflection coating in visible light. The films prepared with different PEDs show different conduction mechanism, which suggested the different band structure between these CuCrO2 films.  相似文献   

13.
Multilayer thin films based on zinc oxide (ZnO) and iron oxide (Fe3O4) are fabricated using pulsed laser deposition method. The structural, electrical, and magnetic properties of these multilayer films are studied. X-ray diffraction study shows that ZnO film is highly oriented along (002) direction, while Fe3O4 film has preferred orientation along (222) direction. These films are transparent, conducting, and ferromagnetic at room temperature. The temperature dependence of resistance measurement shows semiconducting nature and charge transportation in these films is due to tunneling. Negative magneto-resistance of 0.28% is observed at room temperature.  相似文献   

14.
TiO2 films were grown by an advanced pulsed laser deposition method (PLD) on ITO substrates to be used as functional electrodes in the manufacturing of solar cells. A pure titanium target (99.99%) was irradiated by a Nd:YAG laser (355 and 532 nm, 5 ns, 35 mJ, 3 J/cm2) in an oxygen atmosphere at different pressures (20-160 mTorr) and at room temperature. After deposition, the films were subjected to an annealing process at 350 °C. The film structure, surface morphology, thickness, roughness, and optical transmission were investigated. Regardless of the wavelength used, the films deposited at room temperature presented only Ti2O and TiO peaks. After thermal treatment, the TiO2 films became strongly crystalline, with a tetragonal structure and in the anatase phase; the threshold temperature value was 250 °C. The deposition rate was in the range of 0.035-0.250 nm/pulse, and the roughness was 135-305 nm. Optical transmission of the films in the visible range was between 40% and 60%.  相似文献   

15.
L. Zhang  J. Li  X.Y. Jiang 《Thin solid films》2010,518(21):6130-6133
A high-performance ZnO thin film transistor (ZnO-TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer gate insulator is fabricated by sputtering at room temperature. Compared to ZnO-TFTs with sputtering SiO2 gate insulator, its electrical characteristics are significantly improved, such as the field effect mobility enhanced from 11.2 to 52.4 cm2/V s, threshold voltage decreased from 4.2 to 2 V, and sub-threshold swing improved from 0.61 to 0.28 V/dec. The improvements are attributed to the high gate capacitance (from 50 to 150 nF/cm2) as well as nice surface morphology by using dielectric with high~k Ta2O5 sandwiched by SiO2 layers. The capacitance-voltage characteristic of a metal-insulator-semiconductor capacitor with the structure of Indium Tin Oxide/STS/ZnO/Al was investigated and the trap charges at the interface or bulk is evaluated to be 2.24 × 1012 cm2. From the slope of C2 versus gate voltage, the doping density ND of ZnO is estimated to be 1.49 × 1016 cm3.  相似文献   

16.
Fe-O thin films with different atomic ratio of iron to oxygen were deposited on glass and thermally oxidized silicon substrates at temperatures of 300, 473 and 593 K, by reactive magnetron sputtering in Ar+O2 atmosphere. The composition and structure of the thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrical resistivity. It was found from XRD that with increasing the oxygen partial pressure in the working gas, the crystalline structure of the Fe-O films deposited at the substrate temperature of 473 K gradually changed from α-Fe, amorphous Fe-O, Fe3O4, γ-Fe2O3 to Fe21.34O32. The structure and chemical valence of the Fe3O4 films were analyzed by electron microscopy and XPS, respectively.  相似文献   

17.
Transparent conducting fluorine-doped tin oxide (SnO2:F) films have been deposited on glass substrates by pulsed laser deposition. The structural, electrical and optical properties of the SnO2:F films have been investigated as a function of F-doping level and substrate deposition temperature. The optimum target composition for high conductivity was found to be 10 wt.% SnF2 + 90 wt.% SnO2. Under optimized deposition conditions (Ts = 300 °C, and 7.33 Pa of O2), electrical resistivity of 5 × 10− 4 Ω-cm, sheet resistance of 12.5 Ω/□, average optical transmittance of 87% in the visible range, and optical band-gap of 4.25 eV were obtained for 400 nm thick SnO2:F films. Atomic force microscopy measurements for these SnO2:F films indicated that their root-mean-square surface roughness ( 6 Å) was superior to that of commercially available chemical vapor deposited SnO2:F films ( 85 Å).  相似文献   

18.
Bi1.5Zn1.0Nb1.5O7 (BZN) thin films were deposited on polycrystalline alumina substrates by pulsed laser deposition at different substrate temperatures. The phase structure and surface morphology were characterized using X-ray diffractometer (XRD) and atomic force microscopy. Microwave dielectric properties were performed using split-post dielectric resonator method at spot frequencies of 10, 15 and 19 GHz, respectively. The XRD results indicate that the as-deposited Bi1.5Zn1.0Nb1.5O7 thin films deposited at 650 °C are amorphous in nature. The dielectric permittivity and loss tangent of the amorphous BZN thin films are 75.5 and 0.013 at 10 GHz, respectively. As the measure frequency increased to 19 GHz, the dielectric permittivity slightly decreases and loss tangent slightly increases. BZN thin films were crystallized after the post-annealing by a rapid thermal annealing in air for 30 min. The crystallized BZN thin films exhibit the excellent dielectric properties and frequency responses. The dielectric permittivity and loss tangent of the crystallized BZN thin films are 154 and 0.038 at 10 GHz, respectively.  相似文献   

19.
ITO thin films deposited by advanced pulsed laser deposition   总被引:1,自引:0,他引:1  
Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 °C), pressure (1-6 × 10− 2 Torr), laser fluence (1-4 J/cm2) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 °C on a large area (5 × 5 cm2). The films have electrical resistivity of 8 × 10− 4 Ω cm at RT, 5 × 10− 4 Ω cm at 180 °C and an optical transmission in the visible range, around 89%.  相似文献   

20.
Bi2Se3 thin films were deposited on the (100) oriented Si substrates by pulsed laser deposition technique at different substrate temperatures (room temperature −400 °C). The effects of the substrate temperature on the structural and electrical properties of the Bi2Se3 films were studied. The film prepared at room temperature showed a very poor polycrystalline structure with the mainly orthorhombic phase. The crystallinity of the films was improved by heating the substrate during the deposition and the crystal phase of the film changed to the rhombohedral phase as the substrate temperature was higher than 200 °C. The stoichiometry of the films and the chemical state of Bi and Se elements in the films were studied by fitting the Se 3d and the Bi 4d5/2 peaks of the X-ray photoelectron spectra. The hexagonal structure was seen clearly for the film prepared at the substrate temperature of 400 °C. The surface roughness of the film increased as the substrate temperature was increased. The electrical resistivity of the film decreased from 1 × 10−3 to 3 × 10−4 Ω cm as the substrate temperature was increased from room temperature to 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号