首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
较高的随机波动性使得风电功率的预测十分困难。为改善风电功率预测的效果,建立了一种基于变分模态分解(variational mode decomposition,VMD)、改进局部自注意力机制(Improved Local Self-Attention,ILSA)和门控循环单元网络(gated recurrent unit,GRU)的短期风电功率预测方法。使用VMD分解将原始风电功率序列分解为中心频率不一的子模态;对各子模态的中心频率分别建立具有不同高斯偏置优化窗口大小的ILSA模型,并改进其注意力分数公式以更有效地提取信息;采用GRU模型进行风电功率预测,并对各预测序列进行重组,得到最终的预测结果。实验结果表明,相比于各传统模型,所提改进方法能有效提高风电功率预测精度,且对于低频分量有更高的拟合度。  相似文献   

2.
基于VMD和LSTM的超短期风速预测   总被引:1,自引:0,他引:1       下载免费PDF全文
风速具有非线性、非平稳性以及随机性等特点。为提高超短期风速预测精度,提出一种基于变分模态分解(VMD)和长短期记忆网络(LSTM)的超短期风速预测新方法。首先利用变分模态方法将风速序列分解成一系列不同的子模态以降低原始数据的复杂度和非平稳性对预测精度的影响。再对得到的风速子模态分别建立LSTM模型,进行超前1步风速预测。最后叠加各子模态的预测结果得到最终预测风速。对比分析结果显示,该模型的预测精度优于其他多种典型风速预测模型,该模型在超短期风速预测方面表现出较好的性能。  相似文献   

3.
现有的风速预测方法大多是确定性的点预测,无法描述风速的随机性。针对该问题,建立基于变分模态分解(VMD)和蝙蝠算法-相关向量机(BA-RVM)的短期风速区间预测模型。对原始风速序列进行变分模态分解获得多个子序列;采用样本熵(SE)算法对子序列进行重组得到3类具有典型特性的分量;对各分量采用相关向量机算法分别建立预测模型。为进一步提高预测精度、缩小区间范围,引入蝙蝠算法(BA)对预测模型进行参数优化。将各分量的预测结果进行叠加求和得到一定置信水平下总体的区间预测结果。实际算例结果表明,与现有方法相比,所提区间预测方法的预测精度和区间覆盖率更高,区间宽度更窄。  相似文献   

4.
针对现有风功率预测方法多为确定性的点预测,无法描述风功率的随机性的问题,建立了基于集合经验模态分解和相关向量机的短期风功率区间预测模型。首先对原始风功率序列进行集合经验模态分解,获得一个剩余分量及多个具有不同特性的固有模态分量;然后对各分量采用相关向量机算法分别建立区间预测模型;最后将各分量的预测结果进行叠加得到一定置信水平下的区间预测结果。仿真结果表明,所提的区间预测方法具有较高的预测精度和较窄区间宽度,区间覆盖率较高。  相似文献   

5.
为降低风电功率序列波动性并提高风电功率预测精度,提出一种基于SSA-VMD-SE-KELM和蒙特卡洛法的组合风电功率区间预测模型。采用麻雀搜索算法(SSA)优化后的变分模态分解(VMD)算法将功率序列分解为理想数量子序列,通过计算样本熵(SE)对其重构,得到新子序列分别建立核极限学习机(KELM)点预测模型,叠加各点预测结果得到最终点预测结果及功率误差序列,使用蒙特卡洛法随机抽样得到对应置信度下的预测区间。以实际采集到的历史数据为例进行预测,实验结果表明:与传统模型相比,此模型所得功率预测区间紧密跟随风电功率变化趋势,其区间覆盖率更高、平均宽度更窄。  相似文献   

6.
曾亮  雷舒敏  王珊珊  常雨芳 《电网技术》2021,45(12):4701-4710
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法.该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果.对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性.  相似文献   

7.
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。  相似文献   

8.
确定性的点预测在精度上无法满足大规模光伏并网的调度需求,基于此,提出一种光伏出力区间预测方法。针对光伏功率原始数据的强波动特性,采用变分模态分解(variational model decomposition,VMD)方法将其分解为若干个子序列,并依据样本熵理论,将复杂度较高的子序列重组为波动分量S,采用高斯过程回归(Gaussian process regression,GPR)法对分量S进行预测,得到其波动区间。考虑到GPR本身固有的缺陷,采用纵横交叉(crisscross optimization,CSO)算法对它的超参数寻优过程进行改进,而复杂度相对较低的其他VMD子序列代表光伏出力稳定分量,因此,采用支持向量机(support vector machine,SVM)法直接对它们进行确定性预测,最后通过重组各分量的预测值,得出光伏出力的区间预测结果。  相似文献   

9.
随着风电在电力系统中的占比逐步提高,风电功率的精确预测对电力系统的安全稳定运行具有重要意义。然而,风电的随机性和间歇性极大地影响其功率的精确预测。为此,提出二次分解组合长短期记忆(LSTM)的短期风电功率预测模型。首先,采用经验模态分解(EMD)技术将原始风电序列分解为若干固有模态分量;再采用样本熵(SE)技术将各分量重组为高、中、低频3个序列,针对高频模态混叠再次采用麻雀搜索算法-变分模态分解(SSA-VMD)二次分解技术;最后,采用SSA算法对LSTM的参数进行寻优并完成风电功率预测。以湖北省某风电场对所提模型进行验证,并与其他模型进行对比。结果表明,所提模型的平均绝对误差(MAE)为5.79 kW,均方根误差(RMSE)为5.64 kW,平均百分比误差(MAPE)为17.38%,具有更好的预测精度。  相似文献   

10.
风电功率概率预测是分析未来风电功率不确定性的有效方法之一。为提高风电功率概率预测精度,文中提出基于变分模态分解(VMD)与改进门控循环单元分位数回归(QRGRU)的超短期风电功率概率预测方法。首先,采用VMD将原始风电功率序列分解成不同特征的模态函数;然后,对每个模态函数分别建立基于QRGRU的概率预测模型,并将变量间的网络结构约束作为目标函数的惩罚项,改进QRGRU权重在迭代修正过程中的平稳性;最后,在不同分位数条件下叠加各个模态函数预测值,并采用非参数核密度估计方法得到未来风电功率的概率密度函数。结合某风电场实测数据开展具体算例分析,结果表明所提方法能够兼顾区间覆盖率,减少区间宽度,在不同预测步长中均能表现较好的预测效果。  相似文献   

11.
为提高风电功率预测精度,提出了一种基于贝叶斯优化的变分模态分解(variationalmodedecomposition,VMD)和门控循环单元(gatedrecurrentunit, GRU)相结合的风电功率预测方法。首先使用VMD算法对风电功率序列进行分解,并根据排列熵(permutation entropy, PE)的大小来确定序列分解的最佳模态数。然后将分解后得到的子序列分量与关键气象变量数据结合构成模型输入特征。使用GRU网络对各个子序列分量分别进行预测,并将各个子序列分量的预测结果进行重构得到风电功率预测结果。最后采用贝叶斯优化方法对各个子序列预测模型的网络初始超参数进行优化。采用某风电场的风电数据对所提模型进行验证,并与其他6种模型进行性能对比。结果表明,基于贝叶斯优化的VMD-GRU预测模型明显优于其他模型,具有较好的泛化能力,能够有效提高风电功率预测精度。  相似文献   

12.
针对风速时间序列的非线性特征导致其难以准确预测的问题,提出一种基于可变模式分解(variational mode decomposition,VM D)和动态NW小世界纵横交叉算法(dynamic NW small w orld crisscross optimization,NWCSO)优化极限学习机的短期风速组合预测模型。采用一种新型的可变模式分解技术,将原始风速时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立极限学习机模型进行预测,并采用小世界纵横交叉算法对极限学习机的输入权值和隐含层偏置进行优化,以获得最佳的预测效果。实验结果表明,基于VMD的组合预测模型较采用其他常规分解方式时预测精度明显提高。  相似文献   

13.
为提升风电功率预测精度,提出基于二层分解技术和粒子群优化长短期记忆(PSO-LSTM)神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用快速集合经验模态分解(FEEMD)方法将其分解为一系列本征模态函数(IMF)分量和余项,针对高频分量采用变分模态分解(VMD)进行二层分解。运用样本熵来解决分量个数过多、计算量繁杂的问题。通过偏自相关函数(PACF)筛选出与预测值关联程度高的元素确定输入维数。最后,选用PSO来优化LSTM相关参数建立预测模型并叠加获得最终值。试验结果表明,该组合模型有效提高了预测精度。  相似文献   

14.
提升负荷预测的准确性对于指导电力系统的生产计划、经济调度以及稳定运行至关重要。提出一种基于变分模态分解(Variational Mode Decomposition, VMD)和长短期记忆(Long Short Term Memory, LSTM)神经网络的短期负荷预测模型。利用VMD算法将负荷序列分解成不同的本征模态函数(Intrinsic Mode Functions, IMF),每个IMF结合LSTM进行预测,将各部分预测结果叠加得到VMD-LSTM模型的预测结果。分析实验结果,相比单一LSTM和经验模态分解(Empirical Mode Decomposition, EMD)组合LSTM预测方法,该方法能有效的提升负荷预测的准确性。  相似文献   

15.
负荷区间预测能够对负荷出力变化进行概率化分析,准确量化不确定性因素对负荷的影响。相较于传统的点预测,区间预测更能直观反映负荷变化趋势,有助于保障电力系统的安全稳定运行。基于此,文中提出一种基于变分模态分解-长短期记忆神经网络分位数回归(VMD-LSTMQR)的滚动母线负荷区间预测方法。首先,文中采用VMD将原始母线负荷分解成一系列不同频率特征的子序列;接着,确定不同子序列的最优滚动步长并采用LSTMQR分别对不同子序列进行区间预测;最后,将不同子序列的区间预测进行重构,得到原始母线负荷预测结果。文中利用220 kV和10 kV母线负荷数据验证了所采用的区间预测模型相较于传统区间预测模型在预测精度、区间宽度方面得到明显改善。  相似文献   

16.
由于风力发电的随机性和间歇性,风功率预测不仅需要准确的点预测,而且需要可靠的区间预测和概率预测来量化风功率的不确定性。提出了一种基于变分模态分解(variational mode decomposition,VMD)和分位数卷积-循环神经网络的风功率概率预测模型。首先,使用VMD技术将原始风功率数据序列分解为一系列特征互异的模态分量,再通过卷积神经网络(convolutional neural network,CNN)提取反映各模态分量动态变化的高阶特征。然后,基于提取的高阶特征进行分位数回归建模,采用长短期记忆(long short-term memory,LSTM)循环神经网络预测未来任意时刻不同分位数条件下的风功率值。最后,利用核密度估计(kernel density estimation,KDE)得到风功率概率密度曲线。以中国某风电场数据作为算例测试,证明了所提出模型的有效性。  相似文献   

17.
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variational mode decomposition, VMD)和改进松鼠觅食算法优化核极限学习机(improved squirrel search algorithm optimization kernel extreme learning machine, ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model, GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。  相似文献   

18.
准确的功率预测是应对大规模风电并网问题的重要方法,但目前风电功率预测精度仍存在较大误差。为了更精确地对风电功率进行超短期预测,提出一种基于双变量经验模态分解技术和最小二乘支持向量机的组合区间预测方法。首先,通过比例系数法构造复值区间,解决了区间构造的难题;其次,利用双变量经验模态分解和样本熵分别将上、下限结果分解重构,凸显了数据的特征信息;再次,针对各特征分量分别建立基于深度信念网络和最小二乘支持向量机的组合预测模型进行预测;最后,将各分量的预测结果组合得到一定置信率下的预测区间。实际算例表明,与现有的区间预测方法比,所提区间预测方法有效提高了区间覆盖率,达到了更准确的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号