首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将科琴黑(KB)、碳纳米管(CNT)、导电石墨KS-6等3种导电剂分别与导电炭黑SP混合,组成锂离子电池用双组分导电剂。以KB+SP、CNT+SP和KS-6+SP为导电剂的电池以1.0 C在3.0~4.2 V循环400次,容量保持率分别为94.15%、93.07%和92.30%;以KB+SP作为导电剂的电池,内阻最低(28.2 mΩ),化成容量最高(1 756.8 m Ah),-40℃低温下以0.5 C放电到2.5 V时,输出容量为1.31 Ah,达到常温容量的80%以上;以5.0 C高倍率放电(3.0~4.2 V)时,电压平台最高(3.32 V),输出容量最大(1 458.3 m Ah)。  相似文献   

2.
高坡  张彦林  颜健 《电池》2017,(6):339-342
研究球磨分散法制备的石墨烯和碳纳米管(CNT)(2∶3)复合导电剂对三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2性能的影响。SEM分析表明:复合导电剂均匀地分散在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面,形成良好的"点-线-面"三维立体导电网络结构。电化学阻抗测试表明:复合导电剂可降低电池的内阻。充放电测试显示:在1%的低添加量下,使用复合导电剂的电池的首次放电(2.58~4.25 V,0.1 C)比容量比单独使用CNT的高7 mAh/g,比单独使用炭黑的高19 mAh/g;以10.0 C放电的比容量可达128 mAh/g,比单独使用CNT和炭黑的分别提高24 mAh/g和58 mAh/g。  相似文献   

3.
以碳纳米管(CNT)替代导电碳黑(SP)和人造石墨(KS-6)用作导电剂,制备出了20Ah的磷酸铁锂动力锂离子电池。充放电测试结果显示:CNT的引入能够显著的改善了磷酸铁锂正极极片电化学性能,电池放电平均比容量142.5mAh/g,较传统SP+KS-6体系的电池平均放电比容量(138.8mAh/g)高2.6%。这是由于CNT在LFP颗粒间形成网络结构,赋予正极材料较高的电导率。另外,CNT体系的电池,不同倍率下放电比容量均一性较传统的好。碳纳米管加入还提高电极极片的加工性能。这是由于CNT长径比大、良好的柔韧性,增加了极片的柔韧性,减少了电池极片冲片时的报废率。扫描电镜观察显示:CNT在LFP颗粒之间,形成网络结构,提供电子通道,赋予LFP颗粒间良好导电性。  相似文献   

4.
采用共沉淀法制备的球形Ni_(0.8)Co_(0.15)(OH)_(1.9)作为锂离子电池正极材料前驱体,讨论了烧结制备LiNi_(0.8)Co_(0.15)Al_(0.05)O_2过程中W掺杂对正极材料结构和电化学性能的影响。结果表明:在烧结过程中引入Al并同时进行W掺杂,可得到球形形貌完整且表面具有一定空隙的正极材料;在750℃条件下烧结得到的LiNi_(0.8)Co_(0.15)Al_(0.049)W_(0.001)O_2正极材料具有极佳的电化学性能。W掺杂正极材料的放电比容量(2C)达到177.9 m Ah/g,循环300周后,容量保持率达到84.32%。在20C大倍率下,W掺杂正极材料具有153.9 m Ah/g的放电比容量,远高于未掺杂样品(95 mAh/g)。  相似文献   

5.
通过扣式电池平台,研究了NCM111体系下不同导电剂种类(炭黑SP/Ks-6、碳纳米管CNT、碳纳米管与石墨烯CNT/Gra=2/1、纯石墨烯Gra)、CNT管径(5、10、40、100 nm)及含量(1.0%、2.0%、5.0%)对电化学性能的影响。结果表明,低导电剂含量(2.0%)时,CNT具有最优电化学性能,1 C放电比容量165.8 m Ah/g,且50周循环后容量保持率达到82.9%;低管径(5 nm)的CNT具有更好的倍率性能,能分散均匀形成良好的导电网络,且3 C倍率下容量保持率为85.6%。  相似文献   

6.
钱龙  杨国龙  杨斌斌  王海涛 《电池》2016,(4):217-219
分别以磷酸铁锂(LiFePO_4)和人造石墨为正、负极活性材料,碳纳米管(CNT)为正极导电剂,制备5.0 Ah 32650型动力锂离子电池。考察CNT添加量对电池性能的影响。CNT添加量为2%的电池,综合性能最佳:内阻为5.8 mΩ;常温下在2.00~3.65 V充放电,1.0 C放电比容量为129.04 mAh/g,5.0 C充电恒流比为86.87%、放电中值电压为3.023 V,3.0 C循环200次的平均容量保持率为94.39%;在60℃下老化10 d后,容量保持率为92.98%,容量恢复率为95.83%。  相似文献   

7.
王朕  汝强  侯贤华  胡社军 《电池》2016,(5):259-262
以石墨烯为基底,用水热法制备蜂窝状钴酸锌(ZnCo_2O_4)/还原氧化石墨烯(rGO)微球复合材料。用XRD、SEM分析复合材料的结构和形貌,用恒流充放电及循环伏安法测试复合材料的电化学性能。石墨烯的加入,可改变ZnCo_2O_4颗粒的形貌,并改善复合材料作为锂离子电池负极活性物质的电化学性能。以500 m A/g的电流在0.01~3.00 V循环,复合材料的首次放电比容量为1 326.7 m Ah/g,第70次循环的放电比容量为1 212.4 m Ah/g。  相似文献   

8.
以富锂锰基材料为正极材料,人造石墨为负极材料,用叠片工艺制备额定容量为5 Ah的5580135型软包装动力锂离子电池,研究正极面密度、导电剂含量、负极/正极容量比及电解液对倍率放电性能的影响。当正极面密度为240 g/m2、正极导电剂含量为4%、负极/正极容量比为1.1并以1 mol/L Li PF6/EC+PC+EMC+DMC为电解液时,电池的倍率性能最好。25℃时以1.00 C充电、5.00 C放电循环1 000次,容量保持率为99.5%。  相似文献   

9.
用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li_(0.2)Ni_(0.15)Mn_(0.55)Co_(0.1)]O_2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层状结构、较好的晶型结构及良好的电化学性能。在2.0~4.8 V充放电,20℃下的0.10 C首次放电比容量为235.4 m Ah/g,库仑效率为78.5%;依次以0.10 C、0.20 C、0.50 C、0.75 C和1.00 C循环10次,再以0.20 C放电,首次1.00 C放电比容量为149.7 m Ah/g,最后一次0.20 C放电比容量为首次0.10 C放电比容量的85.9%。  相似文献   

10.
采用LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料,研究了SP与KS-6复合,以及SP、CNTs、KS-6三种导电剂按一定比例复合对其全电池电化学性能和内阻的影响。结果表明:添加KS-6能与SP互补协同,改善电池性能,降低内阻;SP∶KS-6配比为5∶5时,容量保持最好,循环200次,放电比容量159.1 mAh/g,内阻值和内阻平均增长速度最小。添加CNTs后,由于CNTs的特殊空间结构,具有保液能力及高电导率性能,电池性能更佳;[SP+CNTs(8∶2)]+KS-6(5∶5)时,循环200次,放电比容量174.9 mAh/g,内阻值43.1 m W,内阻平均增长速度0.052 m W/次。  相似文献   

11.
以过渡金属硫酸盐和氢氧化锂为原料,采用共沉淀法合成锂离子电池富锂正极材料0.5Li_2MnO_3·0.5LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明:900℃煅烧10 h合成的样品具有较好的层状结构和优异的电化学性能;在30℃以0.1 C的电流密度充放电,2.0~4.8 V电位范围内首次放电比容量高达270.1 m Ah/g,循环100次后放电比容量为212.6 m Ah/g;该材料还表现出较好的倍率性能,以5 C充放电时还有120 m Ah/g的放电比容量。  相似文献   

12.
分别用碳纳米管(CNT)及导电炭黑Super-P(SP)作为磷酸铁锂(LiFePO_4)正极材料极片制备过程中的导电剂,对导电性能、电化学性能等进行分析。添加CNT的材料,电阻率低于添加SP的材料,且电化学性能改善明显,其中0.2 C、0.5 C和1.0 C放电(3.8~2.0 V)比容量较添加SP的材料提高约7 mAh/g。这主要是由于CNT为管束状结构,容易在LiFePO_4表面形成导电网络,提高充放电过程中的Li+嵌脱能力,且表面缺陷较SP多,增加了储锂位。  相似文献   

13.
为进一步优化锂离子电池的导电网络,研究炭黑、纳米碳纤维和碳纳米管(CNT)等3种导电剂复合对LiNi0.5Co0.2Mn0.3O2正极电化学性能的影响。二元导电剂的复合要好于单一导电剂,三元导电剂的复合要好于二元导电剂。当总导电剂质量分数为1.5%时,在3.0~4.2 V的充放电实验发现:炭黑、纳米碳纤维和CNT的质量分数分别为0.9%、0.4%和0.2%时,具有最佳的55℃高温循环性能,以1.0 C循环85次的容量保持率为56.81%;当质量分数分别为0.9%、0.3%和0.3%时,三元复合导电剂具有最小的电荷传递电阻2.97Ω,相较质量分数为1.5%的单一炭黑,0.5 C循环2次的比容量提升了5.26 mAh/g, 10.0 C高倍率放电性能提升了15.76%,1.0 C常温循环容量保持率提升了26.66%。  相似文献   

14.
LiMn2O4在锂离子蓄电池中的电化学性能   总被引:1,自引:0,他引:1  
论述了LiMn2O4材料的合成工艺对电化学性能的影响,最佳合成条件下的初放电容量可达到120mAh/g。将尖晶石型LiMn2O4材料作为正极活性材料制成18650型锂离子蓄电池,电化学测试表明电池的初放容量达到1.2Ah。对正极组分(活性物质,导电剂,粘结剂)的不同配比及电极制备工艺进行优化设计,电池在常温下以0.5A电流充放电可达500次循环,荷电态月平均自放率为9.2%。  相似文献   

15.
高娇阳  平丽娜 《电源技术》2016,(8):1547-1549
研究了不同导电剂体系(Super P、VGCF)的LiFePO_4锂离子电池的性能。利用SEM及充放电方法对极片表面形貌和电池的电化学性能进行了表征和测试。SEM测试表明,VGCF分散性能良好,在正极片中形成良好的三维导电网络结构。极片面电阻测试表明,添加VGCF后正极片面电阻明显降低。电性能测试表明,添加VGCF的电池性能明显优于SP作导电剂的电池,大倍率放电性能改善明显,常温1 C/2 C循环700次容量保持率分别为99.40%和94.86%。  相似文献   

16.
用叠片工艺制备了标称容量为25 Ah的磷酸铁锂(LiFePO4)锂离子电池。对电极材料、极片表面形貌和电池的电化学性能进行分析。在正极面密度为2.40 g/dm2,压实密度为2.60 g/cm3时,以0.50C在2.60~3.40 V循环,所制备的单体电芯的最大放电容量为26.56 Ah;正极材料的放电比容量为132.80 mAh/g,循环100次的容量保持率为95.52%。挤压、针刺、过充和短路等测试结果表明:制备的电池具有良好的安全性能。  相似文献   

17.
采用固相法、醋酸盐燃烧法、氢氧化物共沉淀、草酸盐共沉淀的方法制备P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_2钠离子电池层状正极材料。通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学手段等不同测试方法,对比不同方法对合成材料结构、形貌及电化学性能的影响。实验结果表明,用氢氧化物共沉淀法结合固相反应所制备的正极材料具有更优的电化学性能。该材料在0.1 C倍率,2.0~4.0 V电压范围下首次放电比容量为87.9 m Ah/g。1.0 C首次放电比容量为72.3 m Ah/g,50次循环后的容量保持率为108.0%。  相似文献   

18.
《电池》2015,(6)
对基于涂碳铝箔的磷酸铁锂(LiFePO_4)锂离子电池正极中的导电剂、粘结剂配比进行优化。利用正交实验,比较超导碳黑SP及聚偏氟乙烯(PVDF)配比对正极片体电阻率、剥离强度及正极材料比容量的影响。较优的配比中,SP、PVDF含量均为3%。此配比制备的IFP20100140型铝壳20 Ah电池,比能量为130 Wh/kg、比功率为1 300 W/kg,循环性能良好。  相似文献   

19.
分别制备硫碳比为6∶4、7∶3、8∶2、9∶1的Li-S电池正极材料。采用XRD分析了这4种正极材料的成分结构,用场发射扫描电子显微镜观察了它们的形貌,利用交流阻抗谱、循环伏安和电池充放电测试电池的电化学性能。结果表明:正极材料S∶C=8∶2时,电池在0.2 C放电倍率下,首次放电容量为1299 m Ah/g,100次循环后仍能保持570 m Ah/g左右,经过20次循环后电池的库仑效率仍稳定在99%左右,性能明显优于其他3种正极材料组成的电池。  相似文献   

20.
王赞霞  袁万颂 《电池》2016,(1):24-27
将不同粒径的LiMn_(0.7)Fe_(0.3)PO_4与LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2按质量比21∶73混合,用作锂离子电池正极活性物质。D50分别为9.31μm和4.32μm的LiMn_(0.7)Fe_(0.3)PO_4材料制备的极片,最大压实密度分别为3.03 g/cm3和3.10 g/cm3。制备的额定容量为5 Ah的04125136型电池,低倍率下的倍率放电性能相当;当放电倍率≥2.0 C时,放电容量受到粒径的影响,3.0 C首次放电容量(3.0~4.2 V)分别为0.3 C放电容量的80.9%(D50=9.31μm)和87.1%(D50=4.32μm);在低温-20℃下以0.3 C在3.0~4.2 V放电,首次放电容量分别为常温下的55.3%(D50=9.31μm)和61.2%(D50=4.32μm)。以小粒径LiMn_(0.7)Fe_(0.3)PO_4材料制得的混合正极制备的电池,具有较好的倍率性能、低温性能和安全性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号